精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为常数.

(1)讨论函数的单调性;

(2)若存在两个极值点,求证:无论实数取什么值都有.

【答案】(1)答案见解析; (2)证明过程见解析.

【解析】

试题分析:(1)先求得定义域为,求导通分后研究导函数的分子,利用判别式对分子根的个数和分布进行分类讨论,由此求得函数的单调区间;(2)由(1)知时有两个极值点,且,由此利用差比较法,计算的最小值为,即可得证.

试题解析:(1)函数的定义域为.

,记,判别式.

时,恒成立,,所以在区间上单调递增.

时,方程有两个不同的实数根,记,显然

)若图象的对称轴.

两根在区间上,可知当时函数单调递增,,所以,所以在区间上递增.

)若,则图象的对称轴.,所以,当时,,所以,所以上单调递减.时,,所以,所以上单调递增.

综上,当时,在区间上单调递增;当时,上单调递减,在上单调递增.

2)由(1)知当时,没有极值点,当时,有两个极值点,且.

.,则,所以时单调递增,,所以,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据悉遵义市红花岗区、汇川区2017年现有人口总数为110万人,如果年自然增长率为,试解答以下问题:

(1)写出经过年后,遵义市人口总数(单位:万人)关于的函数关系式;

(2)计算10年以后遵义市人口总数(精确到0.1万人);

(3)计算经过多少年后遵义市人口将达到150万人(精确到1年)

(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为D,若函数满足条件:存在,使上的值域为,则称为“倍缩函数”,若函数为“倍缩函数”,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,其左、右顶点为,椭圆与轴正半轴的交点为的外接圆的圆心在直线上.

I)求椭圆的方程;

II)已知直线是椭圆上的动点,,垂足为,是否存在点,使得为等腰三角形?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆,点为抛物线上的动点,为坐标原点,线段的中点的轨迹为曲线.

(1)求抛物线的方程;

(2)点是曲线上的点,过点作圆的两条切线,分别与轴交于两点.

面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了增强环保意识,某社团从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:

优秀

非优秀

总计

男生

40

20

60

女生

20

30

50

总计

60

50

110

(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;

(2)为参加市举办的环保知识竞赛,学校举办预选赛,现在环保测试优秀的同学中选3人参加预选赛,已知在环保测试中优秀的同学通过预选赛的概率为,若随机变量表示这3人中通过预选赛的人数,求的分布列与数学期望.

附:

0.500

0.400

0.100

0.010

0.001

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算:电费每月用电不超过100度时,按每度0.57元计算;每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.

(Ⅰ)设月用电度时,应交电费元,写出关于的函数关系式;

(Ⅱ)小明家第一季度缴纳电费情况如下:

月份

一月

二月

三月

合计

交费金额

76元

63元

45.6元

184.6元

问小明家第一季度共用电多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出与销售额之间有如下的对应数据:

2

4

5

6

8

30

40

60

50

70

(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?

(2)请根据上表提供的数据,求回归直线方程

(3)据此估计广告费用为10时,销售收入的值.

(参考公式:,).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件.试比较与0的关系,并给出理由.

查看答案和解析>>

同步练习册答案