精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的第2项为8,前10项和为185,从数列{an}中依次取出第2项,4 项,8项,…,第2n项,按原来顺序排成一个新数列{bn},
(1)分别求出数列{an}、{bn} 的通项公式,(2)求 数列{bn}的前n项和Tn
分析:(1)因为等差数列{an}的第2项为8,前10项和为185,列出关于首项与公差的方程组求出基本量,利用等差数列的通项公式求出通项,进一步求出}、{bn} 的通项公式.
(2)因为bn=3×2n+2,进其和分成一个等比数列的和及常数列的和,利用公式求出值.
解答:解:设等差数列的首项a1,公差d
(1)∵
a2=8
S10=185

a1+d=8
10a1+45d=185

解得a1=5,d=3
∴an=3n+2,
∴bn=3×2n+2
(2)Tn=3×2+2+3×22+2+…+3×2n+2
=3(2+22+23+…+2n)+2n
=3×2n+1+2n-6
点评:求数列的前n项和常一般先求出通项,根据通项的特点选择合适的求和方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案