精英家教网 > 高中数学 > 题目详情
(2007•长宁区一模)某公司生产一种产品,每年投入固定成本0.5万元,此外,每生产1件这种产品还需要增加投入25元,经测算,市场对该产品的年需求量为500件,且当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t-
12
t2
(万元).
(1)若该公司这种产品的年产量为x(单位:百件).试把该公司生产并销售这种产品所得的年利润y表示为年产量x的函数;
(2)当该公司的年产量x多大时,当年所得利润y最大?
分析:(1)由已知中某公司生产一种产品,每年投入固定成本0.5万元,此外,每生产1件这种产品还需要增加投入25元,经测算,市场对该产品的年需求量为500件,且当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t-
1
2
t2
(万元).根据年利润=销售额-成立,构造出该公司生产并销售这种产品所得的年利润y表示为年产量x的函数.
(2)根据(1)的分段函数解析式,我们分别求出各段上函数的最大值,进而得到该公司当年所得利润y的最大值,及相应的生产量.
解答:解:(1)由题意得:
y=
(5x-
1
2
x2)-0.5-0.25x,0<x≤5
(5×5-
1
2
×52)-0.5-0.25x,x>5
=
-
1
2
x2+
19
4
x-
1
2
,0<x≤5
-
1
4
x+12,x>5
(6分)
(2)当0<x≤5时,函数对称轴为x=
19
4
=4.75∈(0,5)

故x=4.75时y最大值为
345
32
.                                 (3分)
当x>5时,函数单调递减,故y<-
5
4
+12=
43
4
345
32
,(3分)
所以当年产量为475件时所得利润最大.                     (2分)
点评:本题考查的知识点是函数模型的选择与应用,函数的值域,分段函数的解析式求法,二次函数的性质,其中(1)中要注意由于市场对该产品的年需求量为500件,故要分0<x≤5,x>5两种情况将问题转化为分段函数模型,(2)要注意分段函数最值,分段处理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•长宁区一模)函数f(x)=3sin
π2
x-1
的最小正周期为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)已知数列{an}的前n项和Sn=5-4×2-n,则其通项公式为
an=
3(n=1)
4
2n
(n≥2)
an=
3(n=1)
4
2n
(n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)已知函数f(x)=
3
|cos
π
2
x|(x≥0)
,图象的最高点从左到右依次记为P1,P3,P5,…,函数y=f(x)图象与x轴的交点从左到右依次记为P2,P4,P6,…,设Sn=
P1P2
P2P3
+(
P2P3
P3P4
)2
+(
P3P4
P4P5
)3
+(
P4P5
P5P6
)4
+…+(
PnPn+1
pn+1pn+2
)n
,则
lim
n→∞
Sn
1+(-2)n
=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)方程4x-2x-6=0的解为
log23
log23

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•长宁区一模)若P(2,-1)为圆(x-1)2+y2=r2(r>0)内,则r的取值范围是
2
,+∞)
2
,+∞)

查看答案和解析>>

同步练习册答案