【题目】化为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户:
分值区间 | |||||
频数 | 20 | 40 | 80 | 50 | 10 |
男性用户:
分值区间 | |||||
频数 | 45 | 75 | 90 | 60 | 30 |
(1)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列列联表,并回答是否有的把握认为性别对手机的“认可”有关:
女性用户 | 男性用户 | 合计 | |
“认可”手机 | |||
“不认可”手机 | |||
合计 |
附:
0.05 | 0.01 | |
3.841 | 6.635 |
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求2名用户中评分小于90分的概率.
【答案】(1)列联表
女性用户 | 男性用户 | 合计 | |
“认可”手机 | 140 | 180 | 320 |
“不认可”手机 | 60 | 120 | 180 |
合计 | 200 | 300 | 500 |
有的把握认为性别和对手机的“认可”有关.
(2).
【解析】
试题分析:(1)从频数分布表算出女性用户中“认可”手机人数与“不认可”手机人数,填入表格,同理算出男性用户中“认可”手机人数与“不认可”手机人数,填入表格可得列联表,由公式计算出的值与临界值中数据比较即可;(2) 评分不低于80分有6人,其中评分小于90分的人数为4,记为,,,,评分不小于90分的人数为2,记为,,写出从6人中任取2人的所有基本事件,从中找出两名用户评分都小于90分的基本事件,即可求其概率.
试题解析:(1)由频数分布表可得列联表如下图:
女性用户 | 男性用户 | 合计 | |
“认可”手机 | 140 | 180 | 320 |
“不认可”手机 | 60 | 120 | 180 |
合计 | 200 | 300 | 500 |
,所以有的把握认为性别和对手机的“认可”有关.
(3)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于90分的人数为4,记为,,,,评分不小于90分的人数为2,记为,,从6人中任取2人,
基本事件空间为,符合条件的共有9个元素,其中把“两名用户评分都小于90分”记作,
则共有6个元素.
所有两名用户评分都小于90分的概率为.
科目:高中数学 来源: 题型:
【题目】已知二次函数的图像经过坐标原点,其到函数为,数列的前项和为,点均在函数的图像上.
(I)求数列的通项公式;
(Ⅱ)设,是数列的前n项和,求使得<对所有都成立的最小正整数m.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知椭圆方程为,点.
i.若关于原点对称的两点记直线的斜率分别为,试计算的值;
ii.若关于原点对称的两点记直线的斜率分别为,试计算的值;
(2)根据上题结论探究:若是椭圆上关于原点对称的两点,点是椭圆上任意一点,且直线的斜率都存在,并分别记为,试猜想的值,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费用支出(万元)与销售额(万元)之间有如下的对应数据:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求回归直线方程;
(2)据此估计广告费用为12万元时的销售额约为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知椭圆:与抛物线:有相同焦点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线过椭圆的另一焦点,且与抛物线相切于第一象限的点,设平行的直线交椭圆于两点,当△面积最大时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的方程为+=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=1外
D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知在直角坐标系中,曲线的参数方程为(为参数),现以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)在曲线上是否存在一点,使点到直线的距离最小?若存在,求出距离的最小值及点的直角坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com