精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的方程为=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )

A.必在圆x2+y2=2内

B.必在圆x2+y2=2外

C.必在圆x2+y2=1外

D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间

【答案】D

【解析】椭圆的方程为=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1和x2

则x1+x2=-,x1·x2=-

x+x=(x1+x2)2-2x1·x2>=1+e2

因为0<e<1,

即0<e2<1.

所以1<e2+1<2,

所以x+x>1,

<=2,

所以1<x+x<2,

即点P在圆x2+y2=1与x2+y2=2形成的圆环之间.故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线处的切线互相平行,求的值;

(2)求的单调区间;

(3),若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(x)=f(x+4),当2≤x≤6时, f(4)=31.

(1)求mn的值;

(2)比较f(log3m)与f(log3n)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化为推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:

女性用户:

分值区间

频数

20

40

80

50

10

男性用户:

分值区间

频数

45

75

90

60

30

(1)如果评分不低于70分,就表示该用户对手机认可,否则就表示不认可,完成下列列联表并回答是否有的把握认为性别对手机的认可有关:

女性用户

男性用户

合计

认可手机

不认可手机

合计

附:

0.05

0.01

3.841

6.635

(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取2名用户,求2名用户中评分小于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在直角坐标系中,曲线的参数方程为为参数),现以原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线的普通方程和直线的直角坐标方程;

2)在曲线上是否存在一点,使点到直线的距离最小?若存在,求出距离的最小值及点的直角坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,( )满足:①;②.

(1)求的值;

(2)若对任意的实数,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分) 函数f(x)是定义在R上的偶函数,已知当x≤0时,f(x)=x2+4x+3.

(1)求函数f(x)的解析式;

(2)画出函数的图象,并写出函数f(x)的单调区间;

(3)求f(x)在区间[-1,2]上的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 .设 (t为实数).

(Ⅰ)若,求当取最小值时实数t的值;

(Ⅱ)若,问:是否存在实数t,使得向量和向量的夹角为,若存在,请求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数,).

(1)若仅有一个极值点,求的取值范围;

(2)证明:当时,有两个零点,且

查看答案和解析>>

同步练习册答案