【题目】定义在R上的函数f(x)满足f(x)=f(x+4),当2≤x≤6时, ,f(4)=31.
(1)求m,n的值;
(2)比较f(log3m)与f(log3n)的大小.
【答案】(1)m=4,n=30;(2)f(log3m)< f(log3n).
【解析】试题分析:(1)由f(x)=f(x+4),可知4是函数f(x)的一个周期,则有f(2)=f(6)再由f(4)=31组成方程组求解.
(2)由(1)知,函数f(x)=+30,x∈[2,6].表示出f(log3m),f(log3n)再利用函数的单调性比较.
试题解析:
(1)因为函数f(x)在R上满足f(x)=f(x+4),所以4是函数f(x)的一个周期.
可得f(2)=f(6),即+n=+n, ①
又f(4)=31, +n=31, ②
联立①②组成方程组解得m=4,n=30.
(2)由(1)知,函数f(x)=+30,x∈[2,6].
因为1<log34<2,所以5<log34+4<6.
f(log3m)=f(log34)=f(log34+4)=+30=+30.
又因为3<log330<4,
.
因为,所以.
科目:高中数学 来源: 题型:
【题目】下列说法:
①分类变量与的随机变量越大,说明“与有关系”的可信度越大.
②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3.
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中, ,
则.正确的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在区间上的函数,其中常数.
(1)若函数分别在区间上单调,试求的取值范围;
(2)当时,方程有四个不相等的实根.
①证明: ;
②是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为(升).
(1)求关于的函数关系式;
(2)若 ,求当下潜速度取什么值时,总用氧量最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知椭圆方程为,点.
i.若关于原点对称的两点记直线的斜率分别为,试计算的值;
ii.若关于原点对称的两点记直线的斜率分别为,试计算的值;
(2)根据上题结论探究:若是椭圆上关于原点对称的两点,点是椭圆上任意一点,且直线的斜率都存在,并分别记为,试猜想的值,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费用支出(万元)与销售额(万元)之间有如下的对应数据:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求回归直线方程;
(2)据此估计广告费用为12万元时的销售额约为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的方程为+=1(a>b>0),右焦点为F(c,0)(c>0),方程ax2+bx-c=0的两实根分别为x1,x2,则P(x1,x2)( )
A.必在圆x2+y2=2内
B.必在圆x2+y2=2外
C.必在圆x2+y2=1外
D.必在圆x2+y2=1与圆x2+y2=2形成的圆环之间
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市决定在其经济开发区一块区域进行商业地产开发,截止2015年底共投资百万元用于餐饮业和服装业,2016年初正式营业,经过专业经济师预算,从2016年初至2019年底的四年间,在餐饮业利润为该业务投资额的,在服装业可获利该业务投资额的算术平方根.
(1)该市投资资金应如何分配,才能使这四年总的预期利润最大?
(2)假设自2017年起,该市决定对所投资的区域设施进行维护保养,同时发放员工奖金,方案如下:2017年维护保养费用百万元,以后每年比上一年增加百万元;2017年发放员工奖金共计百万元,以后每年的奖金比上一年增加.若该市投资成功的标准是:从2016年初到2019的底,这四年总的预期利润中值(预期最大利润与最小利润的平均数)不低于总投资额的,问该市投资是否成功?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com