精英家教网 > 高中数学 > 题目详情
19.已知α,β∈(0,$\frac{π}{2}$),cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,则角β=(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{5π}{12}$D.$\frac{π}{4}$

分析 由题意求出α+β的范围,由条件和平方关系分别求出sinα、sin(α+β),由角之间的关系和两角差的余弦函数求出cosβ,由β的范围和特殊角的三角函数值求出β.

解答 解:∵α,β∈(0,$\frac{π}{2}$),∴α+β∈(0,π),
∵cosα=$\frac{1}{7}$,∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4\sqrt{3}}{7}$,
∵cos(α+β)=-$\frac{11}{14}$,
∴sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{5\sqrt{3}}{14}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=$\frac{1}{7}×(-\frac{11}{14})+\frac{5\sqrt{3}}{14}×\frac{4\sqrt{3}}{7}$=$\frac{1}{2}$
∴β=$\frac{π}{3}$,
故选A.

点评 本题考查两角差的余弦函数,平方关系,以及变角在三角函数求值中的应用,注意角的范围,考查化简、计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在区间[1,6]和[2,4]上分别各取一个数,记为m和n,则方程$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1$表示焦点在x轴上的椭圆的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在三棱柱ABC-A1B1C1中,B1B=B1A=AB=BC,∠B1BC=90°,D为AC的中点,AB⊥B1D.
(1)求证:平面ABB1A1⊥平面ABC;
(2)在线段CC1(不含端点)上,是否存在点E,使得二面角E-B1D-B的余弦值为$-\frac{{\sqrt{7}}}{14}$?若存在,求出$\frac{CE}{{C{C_1}}}$的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,点E为正方体ABCD-A1B1C1D1的棱BB1的中点,用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.内接于半径为R的半圆的周长最大的矩形的宽和长分别为$\frac{\sqrt{5}}{5}$R、$\frac{4\sqrt{5}}{5}$R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{2}$,且过点A($\frac{3}{2}$,-$\frac{1}{2}$).
(1)求椭圆的方程;
(2)已知y=kx+1,是否存在k使得点A关于l的对称点B(不同于点A)在椭圆C上?若存在求出此时直线l的方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设命题$p:?n∈{N^*},{({-1})^n}•({2a+1})<2+\frac{{{{({-1})}^{n+1}}}}{n}$,命题q:当$?x∈({0,\frac{π}{2}}),({sinx-a})({cosx-a})={a^2}$.
(1)当a=-1时,分别判断命题p和q的真假;
(2)如果p∧q为假命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某单位中年人有500名,青年人有400人,老年人有300人,以每位员工被抽取的概率为0.4,向该单位抽取了一个容量为n的样本,则n=480.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-aex+b(a>0,b∈R).
(1)求f(x)的最大值;
(2)若函数f(x)有两个不同的零点x1,x2,证明:x1+x2<-2lna.

查看答案和解析>>

同步练习册答案