精英家教网 > 高中数学 > 题目详情
(2012•马鞍山二模)设同时满足条件:①
bn+bn+2
2
bn+1
;②bn≤M(n∈N+,M是与n无关的常数)的无穷数列{bn}叫“嘉文”数列.已知数列{an}的前n项和Sn满足:Sn=
a
a-1
(an-1)
(a为常数,且a≠0,a≠1).
(1)求{an}的通项公式;
(2)设bn=
2Sn
an
+1
,若数列{bn}为等比数列,求a的值,并证明此时{
1
bn
}
为“嘉文”数列.
分析:(1)当n≥2时,an=Sn-Sn-1=
a
a-1
an-
a
a-1
an-1
an
an-1
=a
,从而可得{an}以a为首项,a为公比的等比数列,由此可求{an}的通项公式;
(2)确定数列{bn}的通项,利用{bn}为等比数列,可求a的值;验证“嘉文”数列的两个条件,即可证得.
解答:解:(1)因为S1=
a
a-1
(a1-1)
,所以a1=a
当n≥2时,an=Sn-Sn-1=
a
a-1
an-
a
a-1
an-1
an
an-1
=a
,即{an}以a为首项,a为公比的等比数列.
an=a•an-1=an;         …(4分)
(2)由(1)知,bn=
a
a-1
(an-1)
an
+1=
(3a-1)an-2a
(a-1)an

若{bn}为等比数列,则有b22=b1b3,而b1=3,b2=
3a+2
a
b3=
3a2+2a+2
a2

(
3a+2
a
)2=3•
3a2+2a+2
a2
,解得a=
1
3
…(7分)
再将a=
1
3
代入得:bn=3n,其为等比数列,所以a=
1
3
成立…(8分)
由于①
1
bn
+
1
bn+2
2
=
1
3n
+
1
3n+2
2
2
1
3n
1
3n+2
2
=
1
3n+1
=
1
bn+1
…(10分)
(或做差更简单:因为
1
bn
+
1
bn+2
2
-
1
bn+1
=
5
3n+2
-
1
3n+1
=
2
3n+2
>0
,所以
1
bn
+
1
bn+2
2
1
bn+1
也成立)
1
bn
=
1
3n
1
3
,故存在M≥
1
3

所以符合①②,故{
1
bn
}
为“嘉文”数列…(12分)
点评:本题考查等比数列的定义与通项,考查新定义,解题的关键是理解新定义,正确运用新定义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•马鞍山二模)现对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策”的态度有差异?
月收入不低于55百元的人数 月收入低于55百元的人数 合计
赞成 a= b=
不赞成 c= d=
合计
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人不赞成“楼市限购政策”的概率.
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.)
参考值表:
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)已知椭圆C1
x2
m+2
+
y2
n
=1
与双曲线C2
x2
m
-
y2
n
=1
共焦点,则椭圆C1的离心率e的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)己知在锐角△ABC中,角A,B,C所对的边分别为a、b、c,向量
m
=(a2+b2-c2,ab),
n
=(sinC,-cosC),且
m
n

(I)求角C的大小;
(II)当c=1时,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•马鞍山二模)设x1,x2是关于x的方程x2+mx+
1+m2
=0的两个不相等的实数根,那么过两点A(x1x12)B(x2x22)的直线与圆x2+y2=2的位置关系是(  )

查看答案和解析>>

同步练习册答案