精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,为的中点.

(1)求证:∥平面
(2)求证:平面

(1)证明见解析;(2)证明见解析.

解析试题分析:(1)连接相交于,即可证明平面;
(2)根据线面垂直的判定定理即可证明平面
试题解析:(1)证明:如图,连接相交于
的中点
连结,则的中点
所以,
平面
所以,平面
(2)因为,所以四边形为正方形,所有
又因为平面
所以
所以平面
所以
又在直棱柱
所以平面
考点:1.线面平行的判定定理;2.线面垂直的判定定理和性质定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正方形ADEF与梯形ABCD所在平面互相垂直,,点M在线段EC上且不与E,C重合.

(Ⅰ)当点M是EC中点时,求证:平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面
(2)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平行四边形中,,以为折线,把折起,使平面平面,连结.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是边长为3的正方形,,与平面所成的角为.

(1)求二面角的的余弦值;
(2)设点是线段上一动点,试确定的位置,使得,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知矩形中,,将矩形沿对角线折起,使移到点,且在平面上的射影恰好在上.

(1)求证:
(2)求证:平面平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图示,在底面为直角梯形的四棱椎P   ABCD中,AD//BC,ÐABC= 900, PA^平面ABCD,PA= 4,AD= 2,AB=2,BC = 6.

(1)求证:BD^平面PAC ;
(2)求二面角A—PC—D的正切值;
(3)求点D到平面PBC的距离.

查看答案和解析>>

同步练习册答案