精英家教网 > 高中数学 > 题目详情
已知函数g(x)=
1-x2
1+x2
(x≠0,x≠±1,x∈R)
的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性并用定义证明;
(3)解不等式f(3x+1)>f(5x+1).
(1)由y=
1-x2
1+x2
x2=
1-y
1+y
>0
,故-1<y<1,因此A=(-1,0)∪(0,1).又
因为f(-x)=f(x),所以f(x)是偶函数;
(2)设x1<x2,则f(x1)-f(x2)=
1
x21
-
x21
-
1
x22
+
x22
=(x2-x1)(x2+x1)(1+
1
x21
x22
)

①如果x1,x2∈(-1,0),那么x1+x2<0,故f(x1)-f(x2)<0即f(x1)<f(x2);
②若x1,x2∈(0,1),则x1+x2>0,故f(x1)-f(x2)>0即f(x1)>f(x2).
因此f(x)在(-1,0)单增,在(0,1)单减;
(3)因为f(x)是偶函数,所以f(x)=f(|x|),从而原不等式化为f(|3x+1|)>f(|5x+1|).
|3x+1<|5x+1
0<|3x+1<1
0<|5x+1<1
,即
(8x+2)•2x>0
-
2
3
<x<0且x≠-
1
3
-
2
5
<x< 0且x≠-
1
5

解得-
2
5
<x<-
1
3
或-
1
3
x<-
1
4
,从而原不等式的解集为{x|-
2
5
<x<-
1
3
或-
1
3
x<-
1
4
}
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=1-cos(πx+2φ)(0<φ<
π
2
)
的图象过点(
1
2
,  2)
,若有4个不同的正数xi满足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),则x1+x2+x3+x4等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1-x21+x2
(x≠0,x≠±1,x∈R)
的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性并用定义证明;
(3)解不等式f(3x+1)>f(5x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1-2x1+2x
.判断并证明函数g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,则函数g(x+3)的零点所在的区间为(  )
A、(-1,0)
B、(-4,-3)
C、(-3,-2)或(-2,-1)
D、(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
-1,x>0
0,x=0
1,x<0
,函数f(x)=x2?g(x),则满足不等式f(a-2)+f(a2)>0的实数a的取值范围是(  )
A、(-2,1)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步练习册答案