精英家教网 > 高中数学 > 题目详情
(2012•江西)过直线x+y-2
2
=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是
2
2
2
2
分析:根据题意画出相应的图形,设P的坐标为(a,b),由PA与PB为圆的两条切线,根据切线的性质得到OA与AP垂直,OB与BP垂直,再由切线长定理得到PO为角平分线,根据两切线的夹角为60°,求出∠APO和∠BPO都为30°,在直角三角形APO中,由半径AO的长,利用30°角所对的直角边等于斜边的一半求出OP的长,由P和O的坐标,利用两点间的距离公式列出关于a与b的方程,记作①,再由P在直线x+y-2
2
=0上,将P的坐标代入得到关于a与b的另一个方程,记作②,联立①②即可求出a与b的值,进而确定出P的坐标.
解答:解:根据题意画出相应的图形,如图所示:
直线PA和PB为过点P的两条切线,且∠APB=60°,
设P的坐标为(a,b),连接OP,OA,OB,
∴OA⊥AP,OB⊥BP,PO平分∠APB,
∴∠OAP=∠OBP=90°,∠APO=∠BPO=30°,
又圆x2+y2=1,即圆心坐标为(0,0),半径r=1,
∴OA=OB=1,
∴OP=2AO=2BO=2,∴
a2+b2
=2,即a2+b2=4①,
又P在直线x+y-2
2
=0上,∴a+b-2
2
=0,即a+b=2
2
②,
联立①②解得:a=b=
2

则P的坐标为(
2
2
).
故答案为:(
2
2
点评:此题考查了圆的切线方程,涉及的知识有:切线的性质,切线长定理,含30°直角三角形的性质,以及两点间的距离公式,利用了数形结合的思想,根据题意画出相应的图形是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)如图,已知正四棱锥S-ABCD所有棱长都为1,点E是侧棱SC上一动点,过点E垂直于SC的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图象大致为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知椭圆的两个焦点F1(-
3
,0)
F2(
3
,0)
,过F1且与坐标轴不平行的直线l1与椭圆相交于M,N两点,△MNF2的周长等于8.若过点(1,0)的直线l与椭圆交于不同两点P、Q,x轴上存在定点E(m,0),使
PE
QE
恒为定值,则E的坐标为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在直角坐标平面内,已知函数f(x)=loga(x+2)+3(a>0且a≠1)的图象恒过定点P,若角θ的终边过点P,则cos2θ+sin2θ的值等于(  )

查看答案和解析>>

同步练习册答案