| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
分析 先利用三角函数的差角公式展开曲线的极坐标方程的左式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得其直角坐标方程式,再在直角坐标系中算出点M的坐标,再利用直角坐标中的关系求出距离的最小值即可.
解答 解:点M(4,$\frac{π}{3}$)的直角坐标为(2,2$\sqrt{3}$),
曲线ρcos(θ-$\frac{π}{3}$)=2上的直角坐标方程为:
x+$\sqrt{3}$y-4=0,
根据点到直线的距离公式得:
d=$\frac{|2+6-4|}{\sqrt{4}}$=2.
故选:A.
点评 本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com