精英家教网 > 高中数学 > 题目详情
给出下列命题:①若z∈C,则z2≥0;②若a,b∈R,且a>b则a+i>b+i③若a∈R,则(a+1)i是纯虚数;④若z=
1i
,则z3+1对应的点在复平面内的第一象限.其中正确命题的序号是
分析:①若z∈C,则z2≥0不成立;②因为复数不能比较大小,所以a+i>b+i不成立;③a∈R,则(a+1)i不一定是纯虚数;④z=
1
i
=-i,则z3+1=1+i对应的点(1,1)在复平面内的第一象限.
解答:解::①若z∈C,则z2≥0不成立.比如i2=-1<0;
②因为复数不能比较大小,所以a+i>b+i不成立;
③a∈R,则(a+1)i不一定是纯虚数,比如(-1+1)i=0就不是纯虚数,
故③不成立;
z=
1
i
=-i,则z3+1=1+i对应的点(1,1)在复平面内的第一象限,故④成立.
故答案为:④.
点评:本题考查复数的代数表示法及其几何意义,是基础题,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①如果向量
a
b
c
共面,向量
b
c
d
也共面,则向量
a
b
c
d
共面;
②已知直线a的方向向量
a
与平面α,若
a
∥平面α,则直线a∥平面α;
③若P、M、A、B共面,则存在唯一实数x、y使
MP
=x
MA
+y
MB

④对空间任意点O与不共线的三点A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x+y+z=1),则P、A、B、C四点共面; 在这四个命题中为真命题的序号有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①“x=2”是“x2=4”的充分不必要条件;
②设A={x||x|≤3},B={y|y=-x2+t},若A∩B=∅,则实数t的取值范围为[3,+∞);
③若log2x+logx2≥2,则x>1;
④存在x,y∈R,使sin(x-y)=sinx-siny;
⑤若命题P:对任意的x∈R,函数y=cos(2x-
π
3
)
的递减区间为[kπ-
π
12
,kπ+
12
](k∈Z)
,命题q:存在x∈R,使tanx=1,则命题“p且q”是真命题.
其中真命题的序号为
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,若θ∈(
π
4
π
2
)
,则f(sinθ)>f(cosθ);
②函数y=2cos(
π
3
-2x)
的单调递减区间是[kπ+
π
6
,kπ+
3
](k∈Z)

③若f(x)=2cos2
x
2
-1,则f(x+π)=-f(x)对x∈R恒成立

④要得到函数y=sin(
x
2
-
π
4
)的图象,只需将y=sin
x
2
的图象向右平移
π
4
个单位

其中是真命题的有
②③
②③
(填写所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•成都一模)已知非零向量
OA
OB
OC
OD
满足:
OA
OB
Z+β
OC
Z+γ
OD
Z(α,β,γ∈R),B、C、D为不共线三点,给出下列命题:
①若α=
3
2
,β=
1
2
,γ=-1,则A、B、C、D四点在同一平面上;
②若α=β=γ=1,|
OB
Z|+|
OC
|+|
OD
|=1,<
OB
OD
>=<
OC
OD
>=
π
2
,<
OB
OC
>=
π
3
,则|
OA
|=2;
③已知正项等差数列{an}(n∈N*Z),若α=a2,β=a2009,γ=0,且A、B、C三点共线,但O点不在直线BC上,则
1
a3
+
4
a2008
的最小值为10;
④若α=
4
3
,β=-
1
3
Z,γ=0,则A、B、C三点共线且A分
BC
所成的比λ一定为-4
其中你认为正确的所有命题的序号是
①②
①②

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若a∈R,则(a+1)i是纯虚数;
②复数i•z的几何意义是将向量
OZ
绕原点O逆时针旋转90°;
③若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1;
④若z3=1,则复数z一定等于1.
其中,正确命题的序号是 (  )

查看答案和解析>>

同步练习册答案