精英家教网 > 高中数学 > 题目详情
如图,平面四边形ABCD中,AB=13,AC=10,AD=5,cos∠DAC=
3
5
AB
AC
=120

(1)求cos∠BAD;
(2)设
AC
=x•
AB
+y•
AD
,求x、y
的值.
分析:(1)设∠CAB=α,∠CAD=β,由AB=13,AC=10,
AB
AC
=120
.可得α的余弦值,又由cos∠DAC=
3
5
,分别求出两个角的正弦值,代入两角和的余弦公式,可得答案.
(2)若
AC
=x•
AB
+y•
AD
,则
AC
AB
=x
AB
2
+y
AD
AB
AC
AD
=x
AB
AD
+y
AD
2
,结合AD=5,及(1)中结论,可得x、y值.
解答:解:(1)设∠CAB=α,∠CAD=β,
cosα=
AB
AC
|
AB
|•|
AC
|
=
120
130
=
12
13
,cosβ=
3
5

sinα=
5
13
,sinβ=
4
5
,….(3分)
∴cos∠BAD=cos(α+β)=cosαcosβ-sinαsinβ=
12
13
3
5
-
5
13
4
5
=
16
65
…..(6分)
(2)由
AC
=x•
AB
+y•
AD
得:
AC
AB
=x
AB
2
+y
AD
AB
AC
AD
=x
AB
AD
+y
AD
2
….(8分)
120=169x+16y
30=16x+25y
…..(10分)
解得:x=
40
63
,y=
50
63
.  …(12分)
点评:本题考查的知识点是平面向量的数量积运算,熟练掌握平面向量夹角公式及数量积公式是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,平面四边形ABCD中,AB=AD=CD=1,BD=
2
,BD⊥CD,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD.四面体A′-BCD顶点在同一个球面上,则该球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,平面四边形ABCD中,AB=AD=CD=1,BD=
2
,BD⊥CD
,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一个球面上,则该球的体积为(  )
A、
3
2
π
B、3π
C、
2
3
π
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠BCD=135°,沿对角线AC将△ADC折起,使面ADC⊥面ABC,
(1)求证:AB⊥面BCD;
(2)求点C到面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图的平面四边形中,AB=80,∠ABC=105°,∠BAC=30°,∠BAD=90°∠ABD=45°,求DC的长.

查看答案和解析>>

同步练习册答案