精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差数列.
(1)求数列{an}(n∈N*)的通项公式;
(2)设g(k)是不等式log2x+log2(3)≥2k+3(k∈N*)整数解的个数,求g(k);
(3)记数列的前n项和为Sn,是否存在正数λ,对任意正整数n,k,使Sn<λ2恒成立?若存在,求λ的取值范围;若不存在,说明理由.
【答案】分析:(1)由题设知f(an)=2n+2,所以log2an=2n+2,由此能够求出数列{an}(n∈N*)的通项公式.
(2)由log2x+log2(3)≥2k+3(k∈N*),知,所以x∈[2k+1,2k+2],由此能求出g(k).
(3)由题意,Sn=1-=2k+1.由恒成立,Sn>0,λ>0,知当Sn取最大值,取最小值时,Sn取到最大值.由此入手能够求出λ的取值范围.
解答:解:(1)∵2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差数列,
∴f(an)=2n+2,
∴log2an=2n+2,…(2分)
.…(4分)
(2)∵log2x+log2(3)≥2k+3(k∈N*),


∴x2-3•2k+1x+2•22k+2≤0,
∴(x-2k+1)(x-2k+2)≤0,
∴x∈[2k+1,2k+2],…(8分)
其中整数个数g(k)=2k+1+1.…(10分)
(3)由题意,=1-=2k+1.…(12分)
恒成立,Sn>0,λ>0,
所以当Sn取最大值,取最小值时,Sn取到最大值.…(14分)
又Sn<1,,所以1-4λ≤λ2,…(16分)
解得.…(18分)
点评:本题考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案