精英家教网 > 高中数学 > 题目详情
4.将y=sin(2x-$\frac{π}{6}$)图象向右平移$\frac{π}{12}$个单位,所得函数图象的一条对称轴的方程是(  )
A.x=$\frac{π}{12}$B.x=$\frac{π}{6}$C.x=$\frac{π}{3}$D.x=-$\frac{π}{12}$

分析 由条件利用y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.

解答 解:将函数y=sin(2x-$\frac{π}{6}$)图象向右平移$\frac{π}{12}$个单位,
所得函数图象对应的函数的解析式为y=sin[2(x-$\frac{π}{12}$)-$\frac{π}{6}$]=sin(2x$-\frac{π}{3}$),
当x=-$\frac{π}{12}$时,函数取得最小值,可得所得函数图象的一条对称轴的方程是x=-$\frac{π}{12}$,
故选:D.

点评 本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某聋哑研究机构,对聋哑关系进行抽样调查,在耳聋的657人中有416人哑,而另外不聋的680人中有249人哑,你能运用这组数据,得出相应结论吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=lnx-$\frac{1}{2}$ax2-2x的单调递减区间为(m,m+2),则a的值为$\frac{1-\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的正整数n,an与2的等差中项等于Sn与2的等比中项.
(1)写出数列的前三项;
(2)猜出通项公式,用数列归纳加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在用反证法证明命题“已知a,b,c∈(0,2),求证a(2-b),b(2-c),c(2-a)不可能都大于1”时,反证假设时正确的是(  )
A.假设a(2-b),b(2-c),c(2-a)都小于1B.假设a(2-b),b(2-c),c(2-a)都大于1
C.假设a(2-b),b(2-c),c(2-a)都不大于1D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.宜昌一中自驾游车队组织车友前往三峡大坝游玩.该车队是由31辆车身长都约为5m(以5m计算)的同一车型的车组成的,行程中匀速通过一个长为2725m的隧道(通过该隧道的车速不能超过25m/s).设车队的速度为xm/s,根据安全和车流的需要,当0<x≤12时,相邻两车之间保持20m的距离;当12<x≤25时,相邻两车之间保持$\frac{1}{6}{x}^{2}$+$\frac{1}{3}x$m的距离.已知自第1辆车车头进入隧道至第31辆车车尾离开隧道所用的时间为y(s).
(1)将y表示为x的函数;
(2)求该车队通过隧道所用时间y的最小值及此时车队的速度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在复平面内,复数$z=\frac{2+i}{1-i}$对应的点位于第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某校从6名教师中选派3名教师同时去3个贫困地区支教,每个地区1人,其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案有(  )
A.24种B.42种C.36种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
(1)sin213°+cos217°-sin 13°cos 17°;
(2)sin215°+cos215°-sin 15°cos 15°;
(3)sin218°+cos212°-sin 18°cos 12°;
(4)sin2(-18°)+cos248°-sin(-18°)cos 48°;
(5)sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

同步练习册答案