精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是(  )
A.某厂一批产品的次品率为 , 则任意抽取其中10件产品一定会发现一件次品
B.气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨
C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈
D.掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5

【答案】D
【解析】某厂一批产品的次品率为
则任意抽取其中10件产品一定会发现一件次品说法是错误的,故A不能选
气象部门预报明天下雨的概率,是说明有多大的把握有雨,而不是具体的什么地方有雨,
故B不正确,
某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈
说法是错误的,治愈率为10%是说明来的所有病人中有10%的被治愈,故C不正确,
掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5,
概率是一个固定的值,不随第几次试验有关,故D正确.
故选D.
【考点精析】通过灵活运用随机事件,掌握在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列前5项和为50, ,数列的前项和为 .

(Ⅰ)求数列 的通项公式;

(Ⅱ)若数列满足, ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中共有8个球,其中3个红球、2个白球、3个黑球.若从袋中任取3个球,则所取3个球中至多有1个红球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017江西师范大学附属中学三模已知函数是自然对数的底数).

(1)求函数的单调区间;

(2)若,当时,求函数的最大值;

(3)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义max{{x,y}= ,设f(x)=max{ax﹣a,﹣logax}(x∈R+ , a>0,a≠1).若a= ,则f(2)+f( )=;若a>1,则不等式f(x)≥2的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体名学生中随机抽取了名学生的体检表,并得到如图的频率分布直方图.

年级名次

是否近视

近视

不近视

(1)若直方图中后四组的频数成等差数列,试估计全 年级视力在以下的人数;

(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在名和名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过的前提下认为视力与学习成绩有关系?

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求函数在点处的切线方程;

(2)对任意的函数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:

P(k2>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.83

x

2

4

5

6

8

y

30

40

60

50

70

(Ⅰ)画出散点图;
(Ⅱ)求回归直线方程;
(Ⅲ)试预测广告费支出为10万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定?

(Ⅱ)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(Ⅲ)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

同步练习册答案