精英家教网 > 高中数学 > 题目详情

以边长为数学公式的正三角形作为底面的斜三棱柱,它的一条侧棱AA1与相邻两边都成450角,若此斜三棱柱的侧面积为数学公式,则棱柱的侧棱长为________.

2
分析:根据题意画出斜三棱柱,作出已知的线线角,根据线面垂直的判定定理证明BC⊥B1B,再由测面积的值列出关于侧棱的方程,然后求出侧棱的值.
解答:过A1做AA1的垂线A1D,取BC的中点E,连接AE,
由题意知A1在底面上的射影在线段AE上,

∵△ABC是正三角形,∴AE⊥BC,
根据线面垂直的判定定理知,BC⊥平面A1AE
∴BC⊥AA1,BC⊥BB1
∵AB⊥DA1,∴∠DAA1=450,设棱AA1=a,则DA1=
∵斜三棱柱的侧面积为4+4
∴4+4=2××+a,
解得,a=2
故答案为:2
点评:本题考查了棱柱的侧面积问题,需要画出几何体,根据线面垂直的定理进行证明侧面的高线,再由平行四边形的面积公式表示出侧面积,列出对应方程进行求解,难度较大,考查了空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

冬天,洁白的雪花飘落时十分漂亮.为研究雪花的形状,1904年,瑞典数学家科克(Koch Heige Von)把雪花理想化,得到了雪花曲线,也叫科克曲线.它的形成过程如下:
(i)将正三角形(图①)的每边三等分,并以中间的那一条线段为一底边向形外作等边三角形,然后去掉底边,得到图②;
(ii)将图②的每边三等分,重复上述作图方法,得到图③;
(iii)再按上述方法无限多次继续作下去,所得到的曲线就是雪花曲线.
将图①、图②、图③…中的图形依次记作M1、M2、…、Mn…设M1的边长为1.
求:(1)Mn的边数an
    (2)Mn的边长Ln
    (3)Mn的面积Sn的极限.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•南汇区二模)如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)…试用 n表示出第n个图形的边数an=
3×4n-1
3×4n-1

查看答案和解析>>

科目:高中数学 来源:河北省正定中学2011-2012学年高二下学期第二次考试数学文科试题 题型:044

已知点M在椭圆D:上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为的正三角形.

(Ⅰ)求椭圆D的方程;

(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若=2,求直线l的斜率;

(Ⅲ)过点G(0,-2)作直线GK与椭圆N:左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|·|GK|=3|RF1|·|F1S|的直线GK是否存在?请说明理由.

查看答案和解析>>

科目:高中数学 来源:山东省模拟题 题型:解答题

已知点M 在椭圆D :上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为的正三角形,
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足的直线GK是否存在?请说明理由。

查看答案和解析>>

科目:高中数学 来源:2012年山东省青岛市高考数学一模试卷(文科)(解析版) 题型:解答题

已知点M在椭圆D:=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|•|GK|=3|RF1|•|F1S|的直线GK是否存在?请说明理由.

查看答案和解析>>

同步练习册答案