精英家教网 > 高中数学 > 题目详情
13.方程x2+(k-1)y2=k+1表示焦点在x轴上的双曲线,则k的取值范围是(  )
A.k<-1B.k>1C.-1<k<1D.k<-1或k>1

分析 将双曲线方程化为标准方程,再利用方程x2+(k-1)y2=k+1表示焦点在x轴上的双曲线,构建不等式组,从而可求实数k的取值范围.

解答 解:双曲线方程可化为:$\frac{{x}^{2}}{k+1}+\frac{{y}^{2}}{\frac{k+1}{k-1}}=1$,
∵方程x2+(k-1)y2=k+1表示焦点在x轴上的双曲线,
∴$\left\{\begin{array}{l}k+1>0\\ \frac{k+1}{1-k}>0\end{array}\right.$,
∴-1<k<1,
故实数k的取值范围是(-1,1),
故选:C.

点评 本题以双曲线方程为载体,考查双曲线的标准方程,解题的关键是把双曲线的方程化为标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.当a>1时,函数y=$\frac{{a}^{x}+1}{{a}^{x}-1}$是(  )
A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数,若f(x)=$\left\{\begin{array}{l}{(2a-1)x,x≥1}\\{lo{g}_{a}x,x<1}\end{array}\right.$在(0,+∞)上单调递减,则a的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=ex,x∈R,a<b,记A=f(b)-f(a),B=$\frac{1}{2}$(b-a)(f(a)+f(b)),则A,B的大小关系是(  )
A.A>BB.A≥BC.A<BD.A≤B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}(a-3)x+5,(x≤1)\\ \frac{2a}{x},(x>1)\end{array}\right.$,满足对任意的,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<0成立,则a的取值范围是(  )
A.(0,3)B.(0,3]C.(0,2)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.记f(x)=ax2-bx+c,若不等式f(x)>0的解集为(1,3),试解关于t的不等式f(2t+8)<f(2+22t).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题:
①求函数y=sin($\frac{π}{4}$-2x)的单调递减区间[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$](k∈Z);
②终边在坐标轴上的角的集合是{a|a=$\frac{kπ}{2}$,k∈Z};
③若logm3<logn3<0,则0<m<n<1;
④函数f(x)=2sinx-1-a上有两个零点,则实数a的取值范围是[$\sqrt{3}$-1,1].
则所有错误命题的序号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知sinx+cosx=-$\frac{1}{5}$(0<x<π),求tanx的值;
(2)已知cos(75°+α)=$\frac{1}{3}$,其中-180°<α<-90°,求sin(105°-α)+cos(375°-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.扇形的中心角为α,所在圆的半径为R,若α=60°,R=10cm,则扇形的弧长为$\frac{10}{3}$πcm.

查看答案和解析>>

同步练习册答案