精英家教网 > 高中数学 > 题目详情
如下图所示,在直三棱柱ABCA1B1C1中,AC=3,BC=4,AB=5,AA1=4,点DAB的中点.

(1)求证:ACBC1
(2)求证:AC1平面CDB1
(3)求异面直线AC1B1C所成角的余弦值.
(1)先证明AC⊥平面BCC1B1,再根据性质即可证明
(2)先证明DEAC1,再根据线面平行的判定定理证明
(3)

试题分析:(1)在直三棱柱ABCA1B1C1中,底面三边长AC=3,BC=4,AB=5,
ACBC.又∵C1CAC.∴AC⊥平面BCC1B1.
BC1?平面BCC1B,∴ACBC1.
(2)设CB1C1B的交点为E,连接DE,又四边形BCC1B1为正方形.
DAB的中点,EBC1的中点,∴DEAC1.
DE?平面CDB1AC1?平面CDB1
AC1平面CDB1.
(3)∵DEAC1,∴∠CEDAC1B1C所成的角.
在△CED中,EDAC1CDABCECB1=2
∴cos∠CED.
∴异面直线AC1B1C所成角的余弦值为.
点评:解决此类问题,要准确应用相应的判定定理和性质定理并注意相互转化,求解两条异面直线的夹角问题时,要注意夹角的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在中,,延长,连接,若,且,则________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABCD—的底面为菱 形 ,AC∩BD=O侧棱BD,F的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在棱长为2的正方体中,设是棱的中点.

⑴ 求证:
⑵ 求证:平面
⑶ 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,中,侧棱与底面垂直,,,点分别为的中点.

(1)证明:;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三条直线相交于一点,可能确定的平面有
A.B.C.D.个或

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,将边长为2的正方形ABCD沿对角线BD折叠,使的平面ABD⊥平面CBD,AE⊥平面ABD,且AE=

(1) 求证:DE⊥AC
(2)求DE与平面BEC所成角的正弦值
(3)直线BE上是否存在一点M,使得CM//平面ADE,若存在,求M的位置,不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:; (2)求证:
(3)设中点,在边上找一点,使平面,并求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求直线与平面所成角的正弦值;
(2)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.1

查看答案和解析>>

同步练习册答案