精英家教网 > 高中数学 > 题目详情
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形
(1)求证:; (2)求证:
(3)设中点,在边上找一点,使平面,并求的值.
(1)根据三视图还原几何体,并能结合向量的知识建立空间直角坐标系,借助于法向量来得到证明。
(2)对于线面的垂直的证明,一般通过线线垂直的证明来得到线面垂直。
(3)

试题分析:解:(1)证明:该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,
两两互相垂直。以分别为轴建立空间直角坐标系,则 ,   2分
,∴

  4分
(2)
,又
           8分
(3)设上一点,的中点,
设平面的一个法向量为,则有
,则有
,得
,…10分
//平面,于是
解得:                                  12分
平面//平面,此时
                           14分
(注:此题用几何法参照酌情给分)
点评:主要是考查了空间中的线面的平行和垂直的证明,熟练的掌握判定定理和性质定理是结题的关键,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCDPD=AB=2, E,F,G分别是PC,PD,BC的中点.

(1)求三棱锥E-CGF的体积;
(2)求证:平面PAB//平面EFG

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下图所示,在直三棱柱ABCA1B1C1中,AC=3,BC=4,AB=5,AA1=4,点DAB的中点.

(1)求证:ACBC1
(2)求证:AC1平面CDB1
(3)求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.
如图,已知正四棱柱的底面边长是,体积是分别是棱的中点.

(1)求直线与平面所成的角(结果用反三角函数表示);
(2)求过的平面与该正四棱柱所截得的多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形均为菱形,,且.

(1)求证:
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四边形中,,点为线段上的一点.现将沿线段翻折到(点与点重合),使得平面平面,连接.

(Ⅰ)证明:平面
(Ⅱ)若,且点为线段的中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图梯形ABCD,AD∥BC,∠A=900,过点C作CE∥AB,AD=2BC,AB=BC,,现将梯形沿CE
折成直二面角D-EC-AB.
(1)求直线BD与平面ABCE所成角的正切值;
(2)设线段AB的中点为,在直线DE上是否存在一点,使得∥面BCD?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:平面EFGH;
(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面和直线,给出下列条件:①;②;③;④;⑤.则使成立的充分条件是      .(填序号)

查看答案和解析>>

同步练习册答案