(05年湖南卷)(12分)
已知在△ABC中,sinA(sinB+cosB)-sinC=0,sinB+cos2C=0,求角A、B、C的大小.
科目:高中数学 来源: 题型:
(05年湖南卷理)(14分)
已知函数f(x)=lnx,g(x)=ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
(05年湖南卷理)(14分)
已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线
l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.
(Ⅰ)证明:λ=1-e2;
(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
(05年湖南卷文)(14分)
已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线
l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.
(Ⅰ)证明:λ=1-e2;
(Ⅱ)若,△PF1F2的周长为6;写出椭圆C的方程;
(Ⅲ)确定λ的值,使得△PF1F2是等腰三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
(05年湖南卷)已知双曲线-=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为 ( )
A.30º B.45º C.60º D.90º
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com