在等差数列{an}中每一项均不为0,若a1+a2+…+a2013=ta1007,则t=( )
A.2011
B.2012
C.2013
D.2014
【答案】
分析:直接写出等差数列的前n项和公式,把a
1+a
2013换为2a
1007即可得到答案.
解答:解:因为数列{a
n}是等差数列,所以
a
1+a
2+…+a
2013=

.
又a
1+a
2+…+a
2013=ta
1007,
所以t=2013.
故选C.
点评:本题考查了等差数列的前n项和,考查了等差数列的性质,含奇数项的等差数列的前n项和等于中间项的乘以项数,是基础题.