精英家教网 > 高中数学 > 题目详情

市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情
况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机
的.同一条道路去程与回程是否堵车相互独立. 假设李生早上需要先开车送小孩去丙地小学,
再返回经甲地赶去乙地上班.假设道路上下班时间往返出现拥堵的概率都是,
道路上下班时间往返出现拥堵的概率都是,只要遇到拥堵上学和上班的都会迟到.

(1)求李生小孩按时到校的概率;
(2)李生是否有八成把握能够按时上班?
(3)设表示李生下班时从单位乙到达小学丙遇到拥堵的次数,求的均值.

(1)(2)李生没有八成把握能够按时上班(3)

解析试题分析:⑴因为道路DE上班时间往返出现拥堵的概率分别是
因此从甲到丙遇到拥堵的概率是 
所以李生小孩能够按时到校的概率是;                    
⑵甲到丙没有遇到拥堵的概率是,                                 
丙到甲没有遇到拥堵的概率也是,                                
甲到乙遇到拥堵的概率是,                      
甲到乙没有遇到拥堵的概率是,李生上班途中均没有遇到拥堵的概率是,所以李生没有八成把握能够按时上班
⑶依题意可以取.                                               
=,=,=,


0
1
2




分布列是:
.
考点:随机事件概率
点评:本题着重考查了用树状图列举随机事件出现的所有情况,并求出某些事件的概率,但
应注意在求概率时各种情况出现的可能性务必相同.用到的知识点为:概率=所求情况数与
总情况数之比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选.
(1)设所选3人中女生人数为,求的分布列及数学期望;
(2)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2013年4月20日8时02分四川省雅安市芦山县(北纬30.3,东经103.0)发生7.0级地震。一方有难,八方支援,重庆众多医务工作者和志愿者加入了抗灾救援行动。其中重庆某医院外科派出由5名骨干医生组成的救援小组,奔赴受灾第一线参与救援。现将这5名医生分别随机分配到受灾最严重的芦山、宝山、天全三县中的某一个。
(1)求每个县至少分配到一名医生的概率。
(2)若将随机分配到芦山县的人数记为,求随机变量的分布列,期望和方差。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知甲箱中只放有x个红球与y个白球,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球.
(Ⅰ)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时的值;
(Ⅱ)当时,求取出的3个球中红球个数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于为正品,小于为次品.现随机抽取这两种元件各件进行检测,检测结果统计如下:

测试指标





元件A





元件B





(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记为生产1件元件A和1件元件B所得的总利润,求随机变量的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作。规定:至少正确完成其中2题的便可提交通过。已知6道备选题中考生甲有4道题能正确完成,2道题不能完成。
(1)求出甲考生正确完成题数的概率分布列,并计算数学期望;
(2)若考生乙每题正确完成的概率都是,且每题正确完成与否互不影响。试从至少正确完成2题的概率分析比较两位考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.

表1:(甲流水线样本频数分布表)  图1:(乙流水线样本频率分布直方图) 
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;
(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.

 
甲流水线
 乙流水线
 合计
合格品


 
不合格品


 
合 计
 
 

附:下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 (参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某社区举办的《有奖知识问答比赛》中,甲、乙、丙三人同时回答某一道题,已知甲回答对这道题的概率是,甲、丙二人都回答错的概率是,乙、丙二人都回答对的概率是
(Ⅰ)求乙、丙二人各自回答对这道题的概率;
(Ⅱ)设乙、丙二人中回答对该题的人数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案