精英家教网 > 高中数学 > 题目详情

已知甲箱中只放有x个红球与y个白球,乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其它区别). 若甲箱从中任取2个球, 从乙箱中任取1个球.
(Ⅰ)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时的值;
(Ⅱ)当时,求取出的3个球中红球个数的期望.

(I) .
(II)红球个数的分布列为
 
.

解析试题分析:(I)由题意知
当且仅当时等号成立,所以,当取得最大值时.
(II)当时,即甲箱中有个红球与个白球,所以的所有可能取值为
,

所以红球个数的分布列为
 
于是.
考点:本题主要考查独立事件的概率计算,随机变量分布列及其数学期望,均值定理的应用。
点评:典型题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。独立事件的概率的计算问题,关键是明确事件、用好公式。本题综合性较强,特别是与不等式相结合,有新意。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛. 该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.

分数(分数段)
频数(人数)
频率
[60,70)


[70,80)


[80,90)


 [90,100)


合  计


(Ⅰ)求出上表中的的值;
(Ⅱ)按规定,预赛成绩不低于分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一·二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一·二班在决赛中进入前三名的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车互不影响.假设李生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班,

(1)写出李生可能走的所有路线;(比如DDA表示走D路从甲到丙,再走D路回到甲,然后走A路到达乙);
(2)假设从丙地到甲地时若选择走道路D会遇到拥堵,并且从甲地到乙地时若选择走道路B也会遇到拥堵,其它方向均通畅,但李生不知道相关信息,那么从出发到回到上班地没有遇到过拥堵的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为
(1)求的值.
(2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校从高二年级学生中随机抽取60名学生,将其会考的政治成绩(均为整数)分成六段: ,…,后得到如下频率分布直方图.

(Ⅰ)求图中的值
(Ⅱ)根据频率分布直方图,估计该校高二年级学生政治成绩的平均分;
(Ⅲ)用分层抽样的方法在80分以上(含 80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数:,其中:,记函数满足条件:的事件为A,求事件A发生的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情
况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机
的.同一条道路去程与回程是否堵车相互独立. 假设李生早上需要先开车送小孩去丙地小学,
再返回经甲地赶去乙地上班.假设道路上下班时间往返出现拥堵的概率都是,
道路上下班时间往返出现拥堵的概率都是,只要遇到拥堵上学和上班的都会迟到.

(1)求李生小孩按时到校的概率;
(2)李生是否有八成把握能够按时上班?
(3)设表示李生下班时从单位乙到达小学丙遇到拥堵的次数,求的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


由于某高中建设了新校区,为了交通方便要用三辆通勤车从老校区把教师接到新校区.已知从新校区到老校区有两条公路,汽车走一号公路堵车的概率为,不堵车的概率为;汽车走二号公路堵车的概率为p,不堵车的概率为1-p,若甲、乙两辆汽车走一号公路,丙汽车由于其他原因走二号公路,且三辆车是否堵车相互之间没有影响.
(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求走二号公路堵车的概率;
(Ⅱ)在(Ⅰ)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目。已知某班第一小组与第二小组各 有六位同学选择科目甲或科 目乙,情况如下表:

 
科目甲
科目乙
总计
第一小组
1
5
6
第二小组
2
4
6
总计
3
9
12
现从第一小组、第二小 组中各任选2人分析选课情况.
(1)求选出的4 人均选科目乙的概率;
(2)设为选出的4个人中选科目甲的人数,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案