精英家教网 > 高中数学 > 题目详情
已知点及圆.(Ⅰ)若直线过点且与圆心的距离为1,求直线的方程;(Ⅱ)设过点P的直线与圆交于两点,当时,求以线段为直径的圆的方程;(Ⅲ)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.
(Ⅰ) , (Ⅱ) (Ⅲ)不存在
:(Ⅰ)设直线的斜率为存在)则方程为.
又圆C的圆心为,半径,由  , 解得.
所以直线方程为, 即 .
的斜率不存在时,的方程为,经验证也满足条件
(Ⅱ)由于,而弦心距
所以.所以的中点.故以为直径的圆的方程为 
(Ⅲ)把直线.代入圆的方程,
消去,整理得.由于直线交圆两点,故,即,解得
则实数的取值范围是.设符合条件的实数存在,
由于垂直平分弦,故圆心必在上.
所以的斜率,而,所以.由于
故不存在实数,使得过点的直线垂直平分弦
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直线m经过点P(-3,),被圆O:x2+y2=25所截得的弦长为8,
(1)求此弦所在的直线方程;
(2)求过点P的最短弦和最长弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(4,6),B(-2,4),求:
(1)直线AB的方程;
(2)以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若命题“曲线C上的点的坐标满足方程f(x,y)=0”是正确的,则下列命题中正确的是
A.方程f(x,y)=0表示的曲线一定是曲线C
B.坐标满足方程f(x,y)=0的点一定在曲线C
C.方程f(x,y)=0表示的曲线不一定是曲线C
D.曲线C是坐标满足方程f(x,y)=0的点的轨迹

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若圆(x-3)2+(y+5)2=r2上有且只有两个点到直线4x-3y-2=0的距离为1,则半径r的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是抛物线上的任意两点,是焦点,是准线,若三点共线,那么以弦为直径的圆与的位置关系是(    )
A.相交B.相切C.相离D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

M(-4,3)为圆心的圆与直线2x+y-5=0相离,那么圆M的半径r的取值范围是(    )
A.0<r<2B.0<r
C.0<r<2D.0<r<10

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从点P(1,-2)引圆(x+1)2+(y-1)2=4的切线,则切线长是(    )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的圆心到直线的距离是(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案