精英家教网 > 高中数学 > 题目详情
17.已知等差数列{an},如果a4=4,a3+a7=10.
(1)求数列{an}的通项公式an
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,数列{an}的前n的和Sn

分析 (1)由题意可知:a3+a7=2a5,则a5=5,则则d=a5-a4=1,由等差数列性质an=a5+(n-5)d=n;
(2)由(1)可知:bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,利用“裂项法”即可求得数列{an}的前n的和Sn

解答 解:(1)由等差数列{an},公差为d,
由a3+a7=2a5
∴2a5=10,则a5=5,
则d=a5-a4=5-4=1,
由等差数列的性质:an=a5+(n-5)d=5+n-5=n,
数列{an}的通项公式an=n;
(2)由(1)可知:bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
数列{an}的前n的和Sn,Sn=b1+b2+…+bn
=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$,
=1-$\frac{1}{n+1}$,
=$\frac{n}{n+1}$,
数列{an}的前n的和Sn=$\frac{n}{n+1}$.

点评 本题考查等数列通项公式及等差数列的性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设F1,F2分别是椭圆E:x2+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<1)的左、右焦点,
(Ⅰ)若椭圆的离心率为$\frac{1}{2}$,求b的值;
(Ⅱ)过F1的直线l与E相交于A、B两点,若|AF2|,|AB|,|BF2|成等差数列,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=${log_{\frac{1}{2}}}(-{x^2}+2x)$的单调递增区间是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆4x2+y2=2上的点到直线2x-y-8=0 的距离的最小值为(  )
A.$\frac{6\sqrt{5}}{5}$B.$\frac{3\sqrt{5}}{5}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}中,若a1•a5=16,则a3等于(  )
A.2B.±2C.4D.±4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=(  )
A.1B.2C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知两定点F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),满足条件|PF1|-|PF2|=2的点P的轨迹是曲线E,直线y=kx-1与E曲线交于A,B两点.
(1)求点P的轨迹曲线的方程;
(2)求k的取值范围;
(3)如果|AB|=6$\sqrt{3}$,且曲线E上存在点C,使$\overrightarrow{OA}$+$\overrightarrow{OB}$=m$\overrightarrow{OC}$,求m的值和的△ABC面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数fM(x)的定义域为实数集R,满足fM(x)=$\left\{\begin{array}{l}1,x∈M\\ 0,x∉M\end{array}$(M是R的非空真子集),在R上有两个非空真子集A,B,且A∩B=ϕ,则F(x)=$\frac{{{f_{A∪B}}(x)+1}}{{{f_A}(x)+{f_B}(x)+2}}$的值域为$\{\frac{1}{2},\frac{2}{3}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图的程序框图,该程序运行后输出i的值是(  ) 
A.5B.6C.7D.9

查看答案和解析>>

同步练习册答案