精英家教网 > 高中数学 > 题目详情
若将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a(如图).
(Ⅰ)若a=2
2
,求证:AB平面CDE;
(Ⅱ)求实数a的值,使得二面角A-EC-D的大小为60°.
(Ⅰ)证明:如图建立空间直角坐标系,则
A(0,0,0),B(2,0,0),C(1,1,
2
),D(0,2,0),E(0,0,2
2
),
AB
=(2,0,0),
DE
=(0,-2,2
2
),
DC
=(1,-1,
2
)
(2分)
设平面CDE的一个法向量为
n1
=(x,y,z)

则有-2y+2
2
z=0,x-y+
2
z=0

z=
2
时,
n1
=(0,2,
2
)
(4分)
AB
n1
=0
,又AB不在平面CDE内,所以AB平面CDE;(7分)
(Ⅱ)如图建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(1,1,
2
),D(0,2,0),E(0,0,a),∴
DE
=(0,-2,a),
DC
=(1,-1,
2
)

设平面CDE的一个法向量为
n2
=(x,y,z)
,则有-2y+az=0,x-y+
2
z=0

取z=2时,
n2
=(a-2
2
,a,2)
(9分)
又平面AEC的一个法向量为
n3
=(-1,1,0)
,(10分)
∵二面角A-EC-D的大小为60°,∴
n2
n3
|
n2
||
n3
|
=
1
2

a2-2
x
a-2=0
,解得a=
2
±2
(13分)
又a>0,所以a=
2
+2
.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AD=
2
,AA1=2,如图,
(1)当点P在BB1上运动时(点P∈BB1,且异于B,B1)设PA∩BA1=M,PC∩BC1=N,求证:MN平面ABCD
(2)当点P是BB1的中点时,求异面直线PC与AD1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,四边形ABCD是平行四边形,E、F分别为PA、BC的中点.
求证:EF平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=BC=2,O为AC和BD的交点,过A、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-AC1Dl,且这个几何体的体积为.
(1)求证:OD1平面BA1C1
(2)求棱A1A的长:
(3)求点D1到平面BA1C1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4(单位:cm),E为PA的中点.
(1)证明:DE平面PBC;
(2)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

P是△ABC所在平面外一点,A′、B′、C′分别是△PBC、△PCA、△PAB的重心,
(1)求证:平面A′B′C′平面ABC;
(2)求SABCS△ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1中,E,F分别是棱AA1,BB1的中点.
(1)求证:平面A1BC1平面ACD1
(2)求异面直线A1F与D1E所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l⊥平面α,有以下几个判断:
①若m⊥l,则mα,
②若m⊥α,则ml
③若mα,则m⊥l,
④若ml,则m⊥α,
上述判断中正确的是(  )
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求证:C1B⊥平面ABC;
(2)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1

查看答案和解析>>

同步练习册答案