精英家教网 > 高中数学 > 题目详情
P是△ABC所在平面外一点,A′、B′、C′分别是△PBC、△PCA、△PAB的重心,
(1)求证:平面A′B′C′平面ABC;
(2)求SABCS△ABC
证明:(1)如图,分别取AB,BC,CA的中点M,N,Q,
连接PM,PN,PQ,MN,NQ,QM,
∵A′,B′,C′分别是△PBC、△PCA、△PAB的重心,
∴A′,B′,C′分别在PN,PQ,PM上,
且PC′:PM=PA:PN=PB:PQ=2:3.
在△PMN中,
PC′
PM
=
PA′
PN
=
2
3

故C′A′MN,
又M,N为△ABC的边AB,BC的中点,MNAC,
∴A′C′AC,
∴A′C′平面ABC,
同理A′B′平面ABC,
∴平面ABC平面A′B′C′;
(2)由(1)知,
A′B′
QN
=
2
3
QN
AB
=
1
2

∴A′B′:AB=1:3.
SABCS△ABC=(A′B′)2:(AB)2=1:9.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设多面体ABCDEF,已知ABCDEF,平面ABCD⊥平面ADF,△ADF是以AD为斜边的等腰直角三角形,若∠ADC=120°,AD=2,AB=2,CD=4,EF=3,G为BC的中点.
(1)求证:EG平面ADF;
(2)求直线DE与平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,AB=2,∠PDA=45°,E、F分别是AB、PC的中点.
(1)求证:EF平面PAD;
(2)求异面直线EF与CD所成的角;
(3)若AD=3,求点D到面PEF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知ABCD是直角梯形,∠ABC=90°,ADBC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)证明:PC⊥CD;
(2)若E是PA的中点,证明:BE平面PCD;
(3)若PA=3,求三棱锥B-PCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a(如图).
(Ⅰ)若a=2
2
,求证:AB平面CDE;
(Ⅱ)求实数a的值,使得二面角A-EC-D的大小为60°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α与平面β平行的条件可以是(  )
A.平面α内有无穷多条直线与β平行
B.直线lα,且lβ
C.直线l?α,m?β,且lβ,mα
D.平面α内的任何直线都平行于β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在平行六面体ABCD-A1B1C1D1中,E、F、G分别是A1D1、D1D、D1C1的中点.
求证:平面EFG平面AB1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点,D点在AB上且DE=
3

(Ⅰ)求证:CD⊥平面A1ABB1
(Ⅱ)求三棱锥A1-CDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP与BD1垂直,则动点P的轨迹为______.

查看答案和解析>>

同步练习册答案