精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP与BD1垂直,则动点P的轨迹为______.
如图,先找到一个平面总是保持与BD1垂直,
连接AC,AB1,B1C,在正方体ABCD-A1B1C1D1中,
有BD1⊥面ACB1
又点P在侧面BCC1B1及其边界上运动,
根据平面的基本性质得:
点P的轨迹为面ACB1与面BCC1B1的交线段CB1
故答案为线段CB1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

P是△ABC所在平面外一点,A′、B′、C′分别是△PBC、△PCA、△PAB的重心,
(1)求证:平面A′B′C′平面ABC;
(2)求SABCS△ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,底面四边形ABCD是正方形,PD⊥平面ABCD,E为PC的中点.
求证:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1的各棱长都为m,E是侧棱CC1的中点,求证AB1⊥平面A1BE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求证:C1B⊥平面ABC;
(2)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P-ABC中,PA=AB,PC=BC,E、F、G分别为PA、AB、PB的中点,
(1)求证:EF平面PBC;
(2)求证:EF⊥平面ACG.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,E是DD1的中点.
(1)求证:AC⊥B1D;
(2)若B1D⊥平面ACE,求
AA1
AB
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥S-ABCD的底面ABCD是矩形,M、N分别是CD、SC的中点,SA⊥底面ABCD,SA=AD=1,AB=
2

(I)求证:MN⊥平面ABN;
(II)求二面角A-BN-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知M是正四面体ABCD棱AB的中点,N是棱CD的中点,则下列结论中,正确的个数有(  )
(1)MN⊥AB;
(2)VA-MCD=VB-MCD
(3)平面CDM⊥平面ABN;
(4)CM与AN是相交直线.
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案