精英家教网 > 高中数学 > 题目详情
如图所示,在四棱锥P-ABCD中,底面四边形ABCD是正方形,PD⊥平面ABCD,E为PC的中点.
求证:
(1)PA平面BDE;
(2)AC⊥平面PBD.
证明:(1)设AC∩BD=H,连接EH,
因为H为正方形ABCD对角线的交点,所以H为AC中点,
又E为PC中点,
所以EH为△PAC中位线,
EHPA,
EH?平面BDE,PA?平面BDE,
所以PA平面BDE.
(2)因为AC、BD为正方形ABCD的对角线,
所以AC⊥BD,
又PD⊥平面ABCD,AC?平面ABCD,
所以PD⊥AC,
又PD∩BD=D,
所以AC⊥平面PDB.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,AB=2,∠PDA=45°,E、F分别是AB、PC的中点.
(1)求证:EF平面PAD;
(2)求异面直线EF与CD所成的角;
(3)若AD=3,求点D到面PEF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在平行六面体ABCD-A1B1C1D1中,E、F、G分别是A1D1、D1D、D1C1的中点.
求证:平面EFG平面AB1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点,D点在AB上且DE=
3

(Ⅰ)求证:CD⊥平面A1ABB1
(Ⅱ)求三棱锥A1-CDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(I)求证:直线AE⊥平面A1D1E;
(II)求三棱锥A-A1D1E的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,ABDC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E平面A1BD,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD-A1B1C1D1是正方体,点E,F分别是BB1,B1D1中点,求证:EF⊥DA1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP与BD1垂直,则动点P的轨迹为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=
2
.等边三角形ADB以AB为轴运动.当CD=______时,面ACD⊥面ADB.

查看答案和解析>>

同步练习册答案