精英家教网 > 高中数学 > 题目详情
长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(I)求证:直线AE⊥平面A1D1E;
(II)求三棱锥A-A1D1E的体积.
(I)证明:∵长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点
∴AE=A1E=
2
,AA1=2,
∴AA12=AE2+A1E2
∴AE⊥A1E
又∵D1A1⊥平面A1EA,AE?平面A1EA
∴AE⊥A1D1,又D1A1∩A1E=A1
∴AE⊥平面A1D1E;
(II)由(I)中AE⊥平面A1D1E,
VA-A1D1E=
1
3
S△A1D1E•AE=
1
3
×
1
2
×1×
2
×
2
=
1
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,四边形ABCD是平行四边形,E、F分别为PA、BC的中点.
求证:EF平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1中,E,F分别是棱AA1,BB1的中点.
(1)求证:平面A1BC1平面ACD1
(2)求异面直线A1F与D1E所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l⊥平面α,有以下几个判断:
①若m⊥l,则mα,
②若m⊥α,则ml
③若mα,则m⊥l,
④若ml,则m⊥α,
上述判断中正确的是(  )
A.①②③B.②③④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD中,∠B=∠D=90°,AD=CD=
6
,∠BAC=60°,E为AC的中点;现将△ACD沿对角线AC折起,使点D在平面ABC上的射影H落在BC上.
(1)求证:AB⊥平面BCD;
(2)求三棱锥D-ABE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,底面四边形ABCD是正方形,PD⊥平面ABCD,E为PC的中点.
求证:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求此时异面直线AE和CH所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求证:C1B⊥平面ABC;
(2)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在△ABC中,BD为AC边上的高,BD=1,BC=AD=2,沿BD将△ABD翻折,使得∠ADC=30°,得几何体B-ACD
(Ⅰ)求证:AC⊥平面BCD;
(Ⅱ)求点D到面ABC的距离.

查看答案和解析>>

同步练习册答案