精英家教网 > 高中数学 > 题目详情
已知M是正四面体ABCD棱AB的中点,N是棱CD的中点,则下列结论中,正确的个数有(  )
(1)MN⊥AB;
(2)VA-MCD=VB-MCD
(3)平面CDM⊥平面ABN;
(4)CM与AN是相交直线.
A.1个B.2个C.3个D.4个
(1)连接CM、DM
∵正△ABC中,M为AB的中点
∴CM⊥AB
同理DM⊥AB,结合MC∩MD=M
∴AB⊥平面CDM,而MN⊆平面CDM
∴MN⊥AB,故(1)是正确的;
(2)棱锥A-MCD与棱锥B-MCD的底面均为三角形MCD,
由(1)得AB⊥平面CDM,
且M为AB的中点,
则棱锥A-MCD与棱锥B-MCD的高AM=BM
故VA-MCD=VB-MCD
故(2)正确;
(3)由(1)的证明知:AB⊥平面CDM
∵AB?平面ABN
∴平面ABN⊥平面CDM,故(3)正确;
(4)CM∩平面ACD=C
AN?平面ACD且C∉AN.
故CM与AN是异面直线
综上所述,正确的命题为(1)(2)(3)
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP与BD1垂直,则动点P的轨迹为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=
2
.等边三角形ADB以AB为轴运动.当CD=______时,面ACD⊥面ADB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体的棱长为1,B′C∩BC′=O,求:
(1)AO与A′C′所成角;
(2)AO与平面ABCD所成角的正切值;
(3)平面AOB与平面AOC所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA平面BDE;
(2)证明:平面BDE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

底面是平行四边形的四棱锥P-ABCD,E、F、G分别为AB、PC、DC的中点,
(1)求证:EF面PAD;
(2)若PA⊥平面ABCD,求证:面EFG⊥面ABCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PDMA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(Ⅰ)求证:平面EFG⊥平面PDC;
(Ⅱ)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是正方形,PB⊥平面ABCD,MA⊥平面ABCD,PB=AB=2MA.求证:
(1)平面AMD平面BPC;
(2)平面PMD⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

空间中点A(1,-2,3)在坐标平面yoz上的投影的坐标是______.

查看答案和解析>>

同步练习册答案