精英家教网 > 高中数学 > 题目详情
如图,三棱锥P-ABC中,PA=AB,PC=BC,E、F、G分别为PA、AB、PB的中点,
(1)求证:EF平面PBC;
(2)求证:EF⊥平面ACG.
证明:(1)∵E、F分别为PA、AB的中点,∴EFPB,
又∵PB?平面PBC,EF?平面PBC,
∴EF平面PBC.
(2)∵PA=AB,PC=BC,G为PB的中点,
∴PB⊥AG,PB⊥CG,
又∵AG∩CG=G,
∴PB⊥面ACG,
又∵E、F分别为PA、AB的中点,
∴EF⊥平面ACG.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

平面α与平面β平行的条件可以是(  )
A.平面α内有无穷多条直线与β平行
B.直线lα,且lβ
C.直线l?α,m?β,且lβ,mα
D.平面α内的任何直线都平行于β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,ABDC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E平面A1BD,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在三棱锥P-ABC中,PA⊥BC,PB⊥AC,则点P在平面ABC上的射影为△ABC的(  )
A.重心B.外心C.内心D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP与BD1垂直,则动点P的轨迹为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,AB=AA1,D是CC1的中点,F是A1B的中点,
(1)求证:DF平面ABC;
(2)求证:AF⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

△OAB是边长为4的正三角形,CO⊥平面OAB且CO=2,设D、E分别是OA、AB的中点.
(1)求证:OB平面CDE;
(2)求三棱锥O-CDE的体积;
(3)在CD上是否存在点M,使OM⊥平面CDE,若存在,则求出M点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆O所在平面为α,AB为直径,C是圆周上一点,且PA⊥AC,PA⊥AB,图中直角三角形有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

底面是平行四边形的四棱锥P-ABCD,E、F、G分别为AB、PC、DC的中点,
(1)求证:EF面PAD;
(2)若PA⊥平面ABCD,求证:面EFG⊥面ABCD.

查看答案和解析>>

同步练习册答案