精英家教网 > 高中数学 > 题目详情
如图所示,已知ABCD是直角梯形,∠ABC=90°,ADBC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)证明:PC⊥CD;
(2)若E是PA的中点,证明:BE平面PCD;
(3)若PA=3,求三棱锥B-PCD的体积.
(1)由已知易得AC=
2
CD=
2
.(1分)
∵AC2+CD2=AD2
∴∠ACD=90°,即AC⊥CD.(2分)
又∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD.(3分)
∵PA∩AC=A,
∴CD⊥平面PAC.(4分)
∵PC?平面PAC,
∴CD⊥PC.(5分)

(2)取AD的中点为F,连接BF,EF.
∵AD=2,BC=1,
∴BCFD,且BC=FD,
∴四边形BCDF是平行四边形,即BFCD.(6分)
∵BF?平面PCD,
∴BF平面PCD.(7分)
∵E,F分别是PA,AD的中点,
∴EFPD.
∵EF?平面PCD,
∴EF平面PCD.(9分)
∵EF∩BF=F,
∴平面BEF平面PCD.(10分)
∵EF?平面BEF,
∴BE平面PCD.(11分)

(3)由已知得S△BCD=
1
2
×1×1=
1
2
,(12分)
所以,VB-PCD=VP-BCD=
1
3
×PA×S△BCD=
1
3
×3×
1
2
=
1
2
.(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,面SAB⊥矩形ABCD所在的平面,△SAB是正三角形,F、E分别是SD,BC的中点.
(1)求证:EF平面SAB;
(2)求证:EF⊥AD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,P为AD1的中点,(1)求证:直线C1P平面AB1C;(2)求异面直线AA1与B1P所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:E、H分别是空间四边形ABCD的边AB、AD的中点,平面α过EH分别交BC、CD于F、G.
求证:EHFG.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=BC=2,O为AC和BD的交点,过A、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-AC1Dl,且这个几何体的体积为.
(1)求证:OD1平面BA1C1
(2)求棱A1A的长:
(3)求点D1到平面BA1C1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF平面ABC;
(2)平面A1FD⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

P是△ABC所在平面外一点,A′、B′、C′分别是△PBC、△PCA、△PAB的重心,
(1)求证:平面A′B′C′平面ABC;
(2)求SABCS△ABC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD-A1B1C1D1
(1)求证:AC⊥BD1
(2)求异面直线AC与BC1所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1的各棱长都为m,E是侧棱CC1的中点,求证AB1⊥平面A1BE.

查看答案和解析>>

同步练习册答案