精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF平面ABC;
(2)平面A1FD⊥平面BB1C1C.
证明:(1)因为E,F分别是A1B,A1C的中点,
所以EFBC,又EF?面ABC,BC?面ABC,所以EF平面ABC;
(2)因为直三棱柱ABC-A1B1C1,所以BB1⊥面A1B1C1,BB1⊥A1D,
又A1D⊥B1C,BB1∩B1C=B1,所以A1D⊥面BB1C1C,又A1D?面A1FD,所以平面A1FD⊥平面BB1C1C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:
(1)AE平面BDF;
(2)平面BDF⊥平面ACE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知PA⊥矩形ABCD所在平面,M、N分别为AB、PC的中点;
(Ⅰ)求证:MN平面PAD;
(Ⅱ)求证:MN⊥CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱ABC-A1B1C1中,△ABC为等腰直角三角形,且∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.
(Ⅰ)求证:DE平面ABC;
(Ⅱ)求证:B1F⊥平面AEF;
(Ⅲ)求二面角A-EB1-F的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知ABCD是直角梯形,∠ABC=90°,ADBC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)证明:PC⊥CD;
(2)若E是PA的中点,证明:BE平面PCD;
(3)若PA=3,求三棱锥B-PCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ平面PAO?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α与平面β平行的条件可以是(  )
A.平面α内有无穷多条直线与β平行
B.直线lα,且lβ
C.直线l?α,m?β,且lβ,mα
D.平面α内的任何直线都平行于β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E,F,M分别是BB1,CC1与AB的中点,
(1)求证:AE平面A1DF;
(2)求证:A1M⊥平面AED;
(3)正方体棱长为2,求三棱锥A1-DEF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知在三棱锥P-ABC中,PA⊥BC,PB⊥AC,则点P在平面ABC上的射影为△ABC的(  )
A.重心B.外心C.内心D.垂心

查看答案和解析>>

同步练习册答案