精英家教网 > 高中数学 > 题目详情
如图,在四棱锥E-ABCD中,底面ABCD为矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F为CE的中点,求证:
(1)AE平面BDF;
(2)平面BDF⊥平面ACE.
证明:(1)设AC∩BD=G,连接FG,易知G是AC的中点,∵F是EC中点,由三角形中位线的性质可得 FGAE,
∵AE?平面BFD,FG?平面BFD,∴AE平面BFD.
(2)∵平面ABCD⊥平面ABE,BC⊥AB,
平面ABCD∩平面ABE=AB∴BC⊥平面ABE,又∵AE?平面ABE,∴BC⊥AE,
又∵AE⊥BE,BC∩BE=B,∴AE⊥平面BCE,∴AE⊥BF.
在△BCE中,BE=CB,F为CE的中点,∴BF⊥CE,AE∩CE=E,∴BF⊥平面ACE,
又BF?平面BDF,∴平面BDF⊥平面ACE.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

二面角α-l-β为60°,A、B是棱l上的两点,AC、BD分别在半平面α、β内,
AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为(  )
A.2aB.
5
a
C.aD.
3
a

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点.
①求证:AN平面MBD;
②求二面角M-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,面SAB⊥矩形ABCD所在的平面,△SAB是正三角形,F、E分别是SD,BC的中点.
(1)求证:EF平面SAB;
(2)求证:EF⊥AD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:
(1)平面EFG平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,E∈BB1,F是AC的中点,截面A1EC⊥侧面AC1.求证:BF平面A1EC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
1
3
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF平面ABC;
(2)平面A1FD⊥平面BB1C1C.

查看答案和解析>>

同步练习册答案