精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1
(1)求证:AC⊥BD1
(2)求异面直线AC与BC1所成角的大小.
(1)∵正方体ABCD-A1B1C1D1中,DD1⊥平面ABCD,AC?平面ABCD,
∴AC⊥DD1
∵正方形ABCD中,AC⊥BD,DD1∩BD=D,
∴AC⊥平面BDD1
∵BD1?平面BDD1,∴AC⊥BD1
(2)连结AD1、CD1
∵正方体ABCD-A1B1C1D1中,AB
.
C1D1
∴四边形ABC1D1是平行四边形,得BC1AD1
由此可得∠D1AC(或补角)就是异面直线AC与BC1所成角.
∵△AD1C是等边三角形,
∴∠D1AC=60°,即异面直线AC与BC1所成角的大小为60°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P-ABCD的高,且PO=
3
,E、F分别是BC、AP的中点.
(1)求证:EF平面PCD;
(2)求三棱锥F-PCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知ABCD是直角梯形,∠ABC=90°,ADBC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)证明:PC⊥CD;
(2)若E是PA的中点,证明:BE平面PCD;
(3)若PA=3,求三棱锥B-PCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α与平面β平行的条件可以是(  )
A.平面α内有无穷多条直线与β平行
B.直线lα,且lβ
C.直线l?α,m?β,且lβ,mα
D.平面α内的任何直线都平行于β

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在平行六面体ABCD-A1B1C1D1中,E、F、G分别是A1D1、D1D、D1C1的中点.
求证:平面EFG平面AB1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E,F,M分别是BB1,CC1与AB的中点,
(1)求证:AE平面A1DF;
(2)求证:A1M⊥平面AED;
(3)正方体棱长为2,求三棱锥A1-DEF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点,D点在AB上且DE=
3

(Ⅰ)求证:CD⊥平面A1ABB1
(Ⅱ)求三棱锥A1-CDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,ABDC,DC=DD1=2AD=2AB=2.
(1)求证:DB⊥平面B1BCC1
(2)设E是DC上一点,试确定E的位置,使得D1E平面A1BD,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

△OAB是边长为4的正三角形,CO⊥平面OAB且CO=2,设D、E分别是OA、AB的中点.
(1)求证:OB平面CDE;
(2)求三棱锥O-CDE的体积;
(3)在CD上是否存在点M,使OM⊥平面CDE,若存在,则求出M点的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案