精英家教网 > 高中数学 > 题目详情
已知向量
m
=(cosx,1-asinx),
n
=(cosx,2),设f(x)=
m
n
,且函数f(x)的最大值为g(a).
(Ⅰ)求函数g(a)的解析式.
(Ⅱ)设0≤θ≤2π,求函数(2cosθ+1)的最大值和最小值以及对应的值.
分析:(I)利用向量的数量积及其对a分类讨论即可得出.
(II)由θ的范围即可得出2cosθ+1的范围,进而利用(I)即可得出最值.
解答:解:(Ⅰ)由题意知f(x)=
m
n
=cos2x+2-2asinx=-sin2x-2asinx+3,
令t=sinx,则-1≤t≤1,从而h(t)=-t2-2at+3=-(t+a)2+a2+3,t∈[-1,1].
对称轴为t=-a.
①当-a≤-1,即a≥1时,
h(t)=-t2-2at+3在t∈[-1,1]上单调递减,h(t)max=h(-1)=2a+2;
②当-1<-a<1,即-1<a<1时,h(t)在[-1,-a]上单调递增,在[-a,1]上单调递减,∴h(t)max=h(-a)=a2+3
③-a≥1,即a≤-1,h(t)=-t2-2at+3在t∈[-1,1]上单调递增,h(t)max=h(1)=-2a+2;
综上,g(a)=
-2a+2,a≤-1
a2+3,-1<a<1
2a+2,a≥1

(2)由0≤θ<2π知,-1≤2cosθ+1≤3.
又因为g(a)在[-1,0]上单调递减,在[0,3]上单调递增,
所以g(2cosθ+1)max=max{g(-1),g(3)}=g(3)=8.θ=0;
g(2cosθ+1)min=g(0)=3,θ=
2
3
π
点评:熟练掌握向量的数量积运算、二次函数的单调性、分类讨论的思想方法等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈[π,2π].
(1)求|
m
+
n
|的最大值;
(2)当|
m
+
n
|=
8
2
5
时,求cos(
θ
2
+
π
8
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈(π,2π)且|
m
+
n
|=
8
2
5
,则cos(
θ
2
+
π
8
)
=
-
4
5
-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
m
=(cosωx,sinωx),
.
n
=(cosωx,2
3
cosωx-sinωx),ω>0,函数f(x)=
.
m
.
n
+|
.
m
|,且函数f(x)图象的相邻两条对称轴之间的距离为
π
2

(1)作出函数y=f(x)-1在[0,π]上的图象
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,c=2,S△ABC=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省豫东、豫北十所名校高三测试理科数学试卷(解析版) 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(cos A,cos B),n=(2c+b,a),且m⊥n.

    (I)求角A的大小;

    (Ⅱ)若a=4,求△ABC面积的最大值.

 

查看答案和解析>>

同步练习册答案