精英家教网 > 高中数学 > 题目详情

【题目】已知在四棱锥中,底面是矩形,平面分别是的中点,与平面所成的角的正切值是

(1)求证:平面

(2)求二面角的正切值.

【答案】(1)见证明;(2)

【解析】

1)取的中点,连接,通过证明四边形是平行四边形,证得,从而证得平面.2)连接,证得与平面所成角.根据的值求得的长,作出二面角的平面角并证明,解直角三角形求得二面角的正切值.

(1)证明:取的中点,连接.∵中点

的中点,∴

,从而四边形是平行四边形, 故

平面平面,∴

(2)∵平面,∴在平面内的射影

与平面所成角,

四边形为矩形,

,∴,

点作的延长线于,连接

平面

据三垂线定理知.∴是二面角的平面角

易知道为等腰直角三角形,∴

=

∴二面角的正切值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,底面为直角梯形,.

(1)求证:平面平面

(2)若直线与平面所成角为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足:|a2﹣a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得 ?若存在,求m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定区域D: .令点集T={(x0 , y0)∈D|x0 , y0∈Z,(x0 , y0)是z=x+y在D上取得最大值或最小值的点},则T中的点共确定条不同的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”,其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为(

A. 6B. 12C. 24D. 48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电影院共有个座位.某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人, 1010人,2019人(同一所学校的学生有的看上午场,也有的看下午场,但每人只能看一-场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、 下午在这个座位上坐的是同一所学校的学生,那么的可能取值有( )

A. 12个 B. 11个 C. 10个 D. 前三个答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为测得河对岸塔的高,先在河岸上选一点,使在塔底的正东方向上,测得点的仰角为60°,再由点沿北偏东15°方向走到位置,测得,则塔的高是(单位:)( )

A. B. C. D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点和向量

(1)若向量与向量同向,且,求点的坐标;

(2)若向量与向量的夹角是钝角,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示:在正方体中,设直线与平面所成角为,二面角的大小为,则为(

A. B. C. D.

查看答案和解析>>

同步练习册答案