精英家教网 > 高中数学 > 题目详情
已知α∈(0,
π
2
),sinα-cosα=
1
5

(1)求sinαcosα的值;
(2)求sinα+cosα的值.
考点:三角函数的化简求值
专题:三角函数的求值
分析:(1)由sinα-cosα=
1
5
,两边平方可得:sin2α+cos2α-2sinαcosα=
1
25
,再利用平方关系即可得出.
(2)由α∈(0,
π
2
),可得sinα>0,cosα>0.于是sinα+cosα=
(sinα+cosα)2
=
1+2sinαcosα
即可得出.
解答: 解:(1)∵sinα-cosα=
1
5
,两边平方可得:sin2α+cos2α-2sinαcosα=
1
25

1-2sinαcosα=
1
25
,解得sinαcosα=
12
25

(2)∵α∈(0,
π
2
),
∴sinα>0,cosα>0.
∴sinα+cosα=
(sinα+cosα)2
=
1+2sinαcosα
=
1+2×
12
25
=
7
5
点评:本题考查了三角函数的单调性、平方法、三角函数的基本关系式,考查了推理能力和计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式x2-5x+4<0的解集为(  )
A、(-∞,-
4
3
)∪(
1
2
,+∞)
B、(-
4
3
1
2
C、(-∞,-
1
2
)∪(
4
3
,+∞)
D、(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
x-2
(x∈R,且x≠2).
(1)求f(x)的单调区间;
(2)若函数g(x)=x2-2ax与函数f(x)在x∈[0,1]上有相同的值域,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)解不等式:
2-x
4+x
>0;
(Ⅱ)解关于x的不等式:x2-(a+1)x+a≥0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB是单位圆上的弦,P是单位圆上的动点,设f(λ)=|
BP
BA
|的最小值是M,若M的最大值Mmax满足Mmax
3
2
,则|
AB
|的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求由抛物线y2=4x与直线y=x-3所围成的平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足|z|=1,且z2+2z+
1
z
<0.求z.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(-2,-4)的直线l的参数方程为
x=-2+
2
2
t
y=-4+
2
2
t
 (t为参数),直线l与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是内角A,B,C的对边,已知a,b,c成等比数列.
(1)若
sinA
sinC
-1=
a-b
a+c
,求角A的大小及
bsinB
c
的值;
(2)求
sinB
sinA
的取值范围.

查看答案和解析>>

同步练习册答案