精英家教网 > 高中数学 > 题目详情

(14分)设函数参考数据

   (Ⅰ).若 处取得极值,

         i .求的值;

         ii.在上存在,使得不等式成立,求c的最小值

    (Ⅱ).当b=a时,若上是单调函数,求的取值范围。  

解析:I.1.

    。…………………………………………1分

    处取得极值,

    …………………………………………………2分

    即

    ………………………………………4分

   ii.在

    由

          

          

   

    当;

    ;

    .……………………………………6分

    面

   

    且

    又

   

   

    ……………9分

   Ⅱ.当

    ①

    ②当时,

   

   

    ③

    从面得;

    综上得,.………………………14分
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、某地区原有可退耕还林面积63.68万亩,从2000年开始执行国家退耕还林政策,当年就退耕还林8万亩,此后退耕还林的面积逐年增加,到2002年底共退耕还林29.12万亩.
(1)求2001年、2002年退耕还林面积的平均增长率.(参考数据:3.42=11.56)
(2)该地区从2003年起加大退耕还林的力度.设2003年退耕还林的面积为y万亩,退耕还林面积的增长率为x.试写出y与x的函数关系式,并求出当y不小于14.4万亩时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

21、某地区原有可退耕还林面积63.68万亩,从2000年开始执行国家退耕还林政策,当年就退耕还林8万亩,此后退耕还林的面积逐年增加,到2002年底共退耕还林29.12万亩.
(1)求2001年、2002年退耕还林面积的平均增长率.(参考数据:3.42=11.56)
(2)该地区从2003年起加大退耕还林的力度.设2003年退耕还林的面积为y万亩,退耕还林面积的增长率为x.试写出y与x的函数关系式,并求出当y不小于14.4万亩时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)-ax的图象在x=1处的切线与直线x+2y-1=0平行.
(Ⅰ)求实数a的值;
(Ⅱ)若方程f (x)=
14
(m-3x)
在[2,4]上有两个不相等的实数根,求实数m的取值范围;(参考数据:e=2.71 828…)
(Ⅲ)设常数p≥1,数列{an}满足an+1=an+ln(p-an)(n∈N*),a1=lnp,求证:an+1≥an

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有三个生活小区(均可看成点)分别位于A、B、C三点处,AB=AC,A到线段BC的距离AO=40,∠ABO=
7
(参考数据:tan
7
2
3
3
).今计划建一个生活垃圾中转站P,为方便运输,P准备建在线段AO(不含端点)上.
(I)设PO=x(0<x<40),试将P到三个小区距离的最远者S表示为x的函数,并求S的最小值;
(II)设∠PBO=a(0<α<
7
),试将P到三个小区的距离之和y表示为a的函数,并确定当a取何值时,可使y最小?

查看答案和解析>>

同步练习册答案