精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(1+x)-ax的图象在x=1处的切线与直线x+2y-1=0平行.
(Ⅰ)求实数a的值;
(Ⅱ)若方程f (x)=
14
(m-3x)
在[2,4]上有两个不相等的实数根,求实数m的取值范围;(参考数据:e=2.71 828…)
(Ⅲ)设常数p≥1,数列{an}满足an+1=an+ln(p-an)(n∈N*),a1=lnp,求证:an+1≥an
分析:(I)由函数f(x)=ln(1+x)-ax的图象在x=1处的切线与直线x+2y-1=0平行,则在x=1处的导数等于直线x+2y-1=0的斜率,从而求解.
(II)由(I)有f(x)=ln(1+x)-x,先将原方程整理为4ln(1+x)-x=m.再利用图象的交点来解决.(III)由f(x)=ln(1+x)-x(x>-1)用导数法证明当x∈(-1,+∞)时,f(x)≤0,得到ln(1+x)≤x.再由已知有p>an,构建an+1-an=ln(p-an)=ln(1+p-1-an)模型,只要再证11+p-1-an>1即可
解答:解:(I)∵f′(x)=
1
1+x
-a

f′(1)=
1
2
-a

由题知
1
2
-a=-
1
2

解得a=1.(3分)

(II)由(I)有f(x)=ln(1+x)-x,
∴原方程可整理为4ln(1+x)-x=m.
令g(x)=4ln(1+x)-x,得g′(x)=
4
1+x
-1=
3-x
1+x

∴当3<x≤4时g'(x)<0,当2≤x<3时g'(x)>0,g'(3)=0,
即g(x)在[2,3]上是增函数,在[3,4]上是减函数,
∴在x=3时g(x)有最大值4ln4-3.(6分)
∵g(2)=4ln3-2,g(4)=4ln5-4,
∴g(2)-g(4)=4ln
3
5
+2
=2(2ln
3
5
+1)=2ln
9e
25

由9e≈24.46<25,于是2ln
9e
25
<0

∴g(2)<g(4).
∴m的取值范围为[4ln5-4,4ln4-3).(9分)

(III)由f(x)=ln(1+x)-x(x>-1)有f′(x)=
1
1+x
-1=-
x
1+x

显然f'(0)=0,当x∈(0,+∞)时,f'(x)<0,当x∈(-1,0)时,f'(x)>0,
∴f(x)在(-1,0)上是增函数,在[0,+∞)上是减函数.
∴f(x)在(-1,+∞)上有最大值f(0),而f(0)=0,
∴当x∈(-1,+∞)时,f(x)≤0,因此ln(1+x)≤x.(*)(11分)
由已知有p>an,即p-an>0,所以p-an-1>-1.
∵an+1-an=ln(p-an)=ln(1+p-1-an),
∴由(*)中结论可得an+1-an≤p-1-an,即an+1≤p-1(n∈N*).
∴当n≥2时,an+1-an=ln(p-an)≥ln[p-(p-1)]=0,即an+1≥an
当n=1,a2=a1+ln(p-lnp),
∵lnp=ln(1+p-1)≤p-1,
∴a2≥a1+ln[p-(p-1)]=a1,结论成立.
∴对n∈N*,an+1≥an.(14分)
点评:本题主要考查导数的几何意义,用导数法解方程根的问题以及考查单调数列,综合性很强,要注意已证结论的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案