精英家教网 > 高中数学 > 题目详情
11.已知数列{an}满足递推关系an=2an-1+3(n∈N*),且a1=-2,则a4=5.

分析 通过对an=2an-1+3变形可得an+3=2(an-1+3),进而有an+3=2n-1,整理即得结论.

解答 解:∵an=2an-1+3
∴an+3=2(an-1+3),即$\frac{{a}_{n}+3}{{a}_{n-1}+3}$=2,
又∵a1=-2,
∴a1+3=-2+3=1,
∴an+3=2n-1
∴an=2n-1-3,
∴a4=24-1-3=5,
故答案为:5.

点评 本题考查等比数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题..

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若直线y=x+t与曲线y=ex相切,则t=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.把分别标有“我”“爱”“你”的三张卡片随意的排成一排,则能使卡片从左到右可以念成“我爱你”和“你爱我”的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.通过随机询问某校110名高中生在购买食物时是否看营养说明,得如下列联表:
总计
看营养说明503080
不看营养说明102030
总计6050110
(1)从这50名女生中按是否看营养说明分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购物时看营养说明有关系”${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,参考数据:
p(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=lg(x2+ax-a-1),给出下述命题:
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥-4.
正确的命题是(  )
A.①③④B.②③C.②④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知(x+$\frac{1}{2\sqrt{x}}$)n的展开式中前三项的系数成等差数列.
(Ⅰ)求n的值;   
(Ⅱ)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在对人们的休闲方式的一次调查中,共调查了100人,其中女性20人,男性80人.女性中有10人主要的休闲方式是看电视,另外10人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外60人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(k2>k)0.400.250.150.100.050.0250.0100.0050.001
  k0.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC的三内角A、B、C的对应边分别为a,b,c,当a2+c2≥b2+ac时,角B的取值范围为(0°,60°].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-1|+2|x+1|,解不等式f(x)>5.

查看答案和解析>>

同步练习册答案