精英家教网 > 高中数学 > 题目详情
2.把分别标有“我”“爱”“你”的三张卡片随意的排成一排,则能使卡片从左到右可以念成“我爱你”和“你爱我”的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

分析 ,验发生包含的事件是三张卡片全排列,满足条件的事件能使卡片从左到右可以念成“我爱你”和“你爱我”,写出事件数,根据古典概型概率公式得到概率.

解答 解:由题意知本题是一个古典概型,
试验发生包含的事件是三张卡片全排列,共有A33=6种结果,
满足条件的事件是卡片排成的顺序从从左到右可以念成“我爱你”和“你爱我”,共有2种结果,
根据古典概型概率公式得到P=$\frac{2}{6}$=$\frac{1}{3}$,
故选:A.

点评 本题考查古典概型,这种问题在高考时可以作为一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知tanα=-2,则$\frac{{2{{sin}^2}α+1}}{{{{sin}^2}α-{{cos}^2}α}}$的值等于$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$
(1)求函数y=f(-2x)+1的最小正周期和单调递减区间;
(2)已知△ABC中的三个内角A,B,C所对的边分别为a,b,c,若锐角A满足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=8,sinB+sinC=$\frac{{13\sqrt{3}}}{16}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x3-ax在(-∞,-1]上递增,则a的取值范围是(  )
A.a>3B.a≥3C.a<3D.a≤3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定点A(a,0),动点P对极点O和点A的张角∠OPA=$\frac{π}{3}$,在OP的延长线上取一点Q,使|PQ|=|PA|,当P在极轴上方运动时,求点Q的轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某海滨浴场海浪的高度y(米)是时间t (0≤t≤24,单位:小时)函数,记作:y=f(t),下表是某日各时的浪高数据:
t(时)03691215182124
y(米)1.410.880.390.911.380.900.420.891.40
经长期观察,y=f(t)的曲线,可以近似地看成函数y=Acos(ωt)+b的图象.
(1)根据以上数据(对浪高采用精确到0.1的数据),求出函数y=Acos(ωt)+b的最小正周期T,振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?
(参考数据cos$\frac{7π}{16}$≈0.2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\frac{sinα+3cosα}{3cosα-sinα}=5$,则$tan({α+\frac{π}{4}})$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足递推关系an=2an-1+3(n∈N*),且a1=-2,则a4=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.小毕喜欢把数描绘成沙滩上的小石子,他照如图所示摆成了正三角形图案,并把每个图案中总的石子个数叫做“三角形数”,记为Tn,则$\frac{1}{2{T}_{1}}$+$\frac{1}{2{T}_{2}}$+$\frac{1}{2{T}_{3}}$+…+$\frac{1}{2{T}_{2015}}$=$\frac{2015}{2016}$.

查看答案和解析>>

同步练习册答案