精英家教网 > 高中数学 > 题目详情
14.已知$\frac{sinα+3cosα}{3cosα-sinα}=5$,则$tan({α+\frac{π}{4}})$=-3.

分析 由已知式子可得tanα,再由两角和的正切公式可得.

解答 解:∵$\frac{sinα+3cosα}{3cosα-sinα}=5$,
∴$\frac{tanα+3}{3-tanα}$=5,解得tanα=2,
∴$tan({α+\frac{π}{4}})$=$\frac{tanα+1}{1-tanα}$=$\frac{2+1}{1-2}$=-3
故答案为:-3

点评 本题考查两角和与差的正切函数,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知幂函数f(x)=${x^{-\frac{1}{2}}}$,若f(a-1)<f(8-2a),则a的取值范围是(3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.观察下列式子:1+$\frac{1}{2^2}$<$\frac{3}{2}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,…,则可归纳出$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}<\frac{2n+1}{n+1}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.把分别标有“我”“爱”“你”的三张卡片随意的排成一排,则能使卡片从左到右可以念成“我爱你”和“你爱我”的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知A,B是⊙O:x2+y2=16上两点,且|AB|=6,若以AB为直径的圆M恰经过点C(1,-1),则圆心M的轨迹方程是(x-1)2+(y+1)2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.通过随机询问某校110名高中生在购买食物时是否看营养说明,得如下列联表:
总计
看营养说明503080
不看营养说明102030
总计6050110
(1)从这50名女生中按是否看营养说明分层抽样,抽取一个容量为5的样本,问样本中看与不看营养说明的女生各有多少名?
(2)根据以上列联表,问能否在犯错误的概率不超过0.010的前提下认为“性别与在购物时看营养说明有关系”${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,参考数据:
p(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=lg(x2+ax-a-1),给出下述命题:
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥-4.
正确的命题是(  )
A.①③④B.②③C.②④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在对人们的休闲方式的一次调查中,共调查了100人,其中女性20人,男性80人.女性中有10人主要的休闲方式是看电视,另外10人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外60人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(k2>k)0.400.250.150.100.050.0250.0100.0050.001
  k0.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=alnx+$\frac{2{a}^{2}}{x}$(a≠0).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若a=1,求证:对于定义域内的任意一个x,都有f(x)≥3-x.

查看答案和解析>>

同步练习册答案