分析 根据所给的几个不等式归纳出左边、右边的规律,根据此规律可归纳出第n个不等式.
解答 解:由题意知,:1+$\frac{1}{2^2}$<$\frac{3}{2}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,…,
观察可得:每个不等式的左边是正整数的倒数之和,且最后一项的分母是项数加1,
右边是分数,且分母是项数加1、分子是以3为首项、2 为公差的等差数列,
∴可归纳出第n个不等式:$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}<\frac{2n+1}{n+1}$(n∈N*),
故答案为:$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}<\frac{2n+1}{n+1}$(n∈N*).
点评 本题考查归纳推理,难点是根据能够找出数之间的内在规律,考查观察、分析、归纳的能力,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 大前提错误导致结论错误 | |
| B. | 小前提错误导致结论错误 | |
| C. | 推理形式错误导致结论错误 | |
| D. | 大前提和小前提都错误导致结论错误 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com