精英家教网 > 高中数学 > 题目详情
20.正实数x,y满足xy+x+2y=6,则xy的最大值为2,x+y的最小值为$4\sqrt{2}-3$.

分析 正数x,y满足xy+x+2y=6,可得x=$\frac{6-2y}{y+1}$>0,解得0<y<3.可得xy=$\frac{y(6-2y)}{y+1}$,x+y=$\frac{6-2y}{y+1}$+y,化简整理利用基本不等式即可得出.

解答 解:∵正数x,y满足xy+x+2y=6,
∴x=$\frac{6-2y}{y+1}$>0,解得0<y<3.
∴xy=$\frac{y(6-2y)}{y+1}$=-2(y+1+$\frac{4}{y+1}$)+10
≤-2×2$\sqrt{(y+1)•\frac{4}{y+1}}$+10=2,当且仅当y=1,x=2时取等号.
∴xy的最大值为2.
∵正数x,y满足xy+x+2y=6,
∴x=$\frac{6-2y}{y+1}$>0,解得0<y<3.
∴x+y=$\frac{6-2y}{y+1}$+y=(y+1)+$\frac{8}{y+1}$-3
≥2$\sqrt{(y+1)•\frac{8}{y+1}}$-3=4$\sqrt{2}$-3,当且仅当y=2$\sqrt{2}$-1,x=2$\sqrt{2}$-2时取等号.
∴x+y的最小值为4$\sqrt{2}$-3.
故答案为:2,$4\sqrt{2}-3$.

点评 本题考查了基本不等式的性质,考查了变形能力、推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数y=f(x)(x∈R),满足f(x+1)=a-f(x),且当x∈[-2,0)时,f(x)=$\left\{\begin{array}{l}{x+2,-2≤x<-1}\\{2-x,-1≤x<0}\end{array}\right.$,则f(2012-$\sqrt{3}$)=2$-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx-x2+ax(a∈R).
(1)当a=1时,求f(x)的最大值;
(2)求函数f(x)的单调区间;
(3)设g(x)=$\frac{ex}{{e}^{x}}$,若对于任意给定的x0∈(0,e],方程f(x)+1=g(x0)在(0,e]内有两个不同的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ln(ax+1)+x3-x2-ax在[2,+∞)上为增函数,则实数a的取值范围为[0,4+2$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{lnx+1}{e^x}$
(1)求函数f(x)的单调区间和最值;
(2)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.观察下列式子:1+$\frac{1}{2^2}$<$\frac{3}{2}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,…,则可归纳出$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}<\frac{2n+1}{n+1}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}满足:a1=2,且a1、a2、a5成等比数列.
(1)求数列{an}的通项公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知A,B是⊙O:x2+y2=16上两点,且|AB|=6,若以AB为直径的圆M恰经过点C(1,-1),则圆心M的轨迹方程是(x-1)2+(y+1)2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知平行四边形ABCD中,$\overrightarrow{AB}$与$\overrightarrow{AC}$对应的复数分别是3+2i与1+4i,两对角线AC与BD相交于P点.
(1)求$\overrightarrow{AD}$对应的复数;
(2)求$\overrightarrow{DB}$对应的复数;
(3)求△APB的面积.

查看答案和解析>>

同步练习册答案