精英家教网 > 高中数学 > 题目详情
15.因为对数函数y=logax是增函数(大前提),而是对数函数$y={log_{\frac{1}{3}}}x$(小前提),所以y=log${\;}_{\frac{1}{3}}$x是增函数(结论).这个推理过程中(  )
A.大前提错误导致结论错误
B.小前提错误导致结论错误
C.推理形式错误导致结论错误
D.大前提和小前提都错误导致结论错误

分析 对于对数函数来说,底数的范围不同,则函数的增减性不同,当a>1时,函数是一个增函数,当0<a<1时,对数函数是一个减函数,对数函数y=logax(a>0且a≠1)是增函数这个大前提是错误的.

解答 解:∵当a>1时,函数y=logax(a>0且a≠1)是一个增函数,
当0<a<1时,此函数是一个减函数
∴y=logax(a>0且a≠1)是增函数这个大前提是错误的,
从而导致结论错.
故选:A.

点评 本题考查演绎推理的基本方法,考查对数函数的单调性,是一个基础题,解题的关键是理解函数的单调性,分析出大前提是错误的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.观察下列式子:1+$\frac{1}{2^2}$<$\frac{3}{2}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,…,则可归纳出$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}<\frac{2n+1}{n+1}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=lg(x2+ax-a-1),给出下述命题:
①函数f(x)的值域为R;
②函数f(x)有最小值;
③当a=0时,函数f(x)为偶函数;
④若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围a≥-4.
正确的命题是(  )
A.①③④B.②③C.②④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在对人们的休闲方式的一次调查中,共调查了100人,其中女性20人,男性80人.女性中有10人主要的休闲方式是看电视,另外10人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外60人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系?
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(k2>k)0.400.250.150.100.050.0250.0100.0050.001
  k0.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知平行四边形ABCD中,$\overrightarrow{AB}$与$\overrightarrow{AC}$对应的复数分别是3+2i与1+4i,两对角线AC与BD相交于P点.
(1)求$\overrightarrow{AD}$对应的复数;
(2)求$\overrightarrow{DB}$对应的复数;
(3)求△APB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC的三内角A、B、C的对应边分别为a,b,c,当a2+c2≥b2+ac时,角B的取值范围为(0°,60°].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=alnx+$\frac{2{a}^{2}}{x}$(a≠0).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若a=1,求证:对于定义域内的任意一个x,都有f(x)≥3-x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在所有两位数(10~99)中,任取一个数,能被2或3整除的概率是(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案