分析 由辅助角公式求得f(x)=2sin$\frac{π}{3}$x,分别求得前7项,可得f(x)=2sin$\frac{π}{3}$x是以6为周期的,周期数列,且每6项和为0,2014=335×6+4,则f(1)+f(2)+…+f(2014)=f(1)+f(2)+…+f(4)=$\sqrt{3}$.
解答 解:f(x)=sin$\frac{πx+π}{3}$-$\sqrt{3}$cos$\frac{πx+π}{3}$=2sin($\frac{πx+π}{3}$-$\frac{π}{3}$)=2sin$\frac{π}{3}$x,
∴f(1)=2sin$\frac{π}{3}$=$\sqrt{3}$,
f(2)=2sin(2×$\frac{π}{3}$)=$\sqrt{3}$,
f(3)=2sin(3×$\frac{π}{3}$)=0,
f(4)=2sin(4×$\frac{π}{3}$)=-$\sqrt{3}$,
f(5)=2sin(5×$\frac{π}{3}$)=-$\sqrt{3}$,
f(6)=2sin(6×$\frac{π}{3}$)=0,
f(7)=2sin(7×$\frac{π}{3}$)=2sin$\frac{π}{3}$=$\sqrt{3}$,
…
∴f(x)=2sin$\frac{π}{3}$x是以6为周期的,周期数列,且每6项和为0,
2014=335×6+4,
f(1)+f(2)+…+f(2014)=f(1)+f(2)+…+f(4)=$\sqrt{3}$,
故答案为:$\sqrt{3}$.
点评 本题考查数列的周期性,考查辅助角公式,周期函数的前n项和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ω=$\frac{π}{4}$,φ=$\frac{3π}{4}$ | B. | ω=$\frac{π}{4}$,φ=$\frac{π}{4}$ | C. | ω=$\frac{π}{2}$,φ=$\frac{π}{4}$ | D. | ω=$\frac{π}{3}$,φ=$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com